Towards a General Purpose Architecture

for UI Generation

Richard Kennard John Leaney
Faculty of Engineering and Faculty of Engineering and
Information Technology Information Technology
University of Technology, Sydney University of Technology, Sydney
rkennard@it.uts.edu.au john.leaney@uts.edu.au

Abstract

Many software projects spend a significant proportion of their time developing the User Interface
(UI), therefore any degree of automation in this area has clear benefits. Such automation is difficult
due principally to the diversity of architectures, platforms and development environments. Attempts
to automate Ul generation to date have contained restrictions which did not accommodate this
diversity, leading to a lack of wide industry adoption or standardisation. The authors set out to
understand and address these restrictions. We studied the issues of Ul generation (especially
duplication) in practice, using action research cycles guided by interviews, adoption studies and
close collaboration with industry practitioners. In addressing the issues raised in our investigation,
we identified five key characteristics any Ul generation technique would need before it should
expect wide adoption or standardisation. These can be summarised as: inspecting existing,
heterogeneous back-end architectures; appreciating different practices in applying inspection
results; recognising multiple, and mixtures of, Ul widget libraries; supporting multiple, and
mixtures of, Ul adornments; applying multiple, and mixtures of, Ul layouts. Many of these
characteristics seem ignored by current approaches. In addition, we discovered an emergent feature
of these characteristics that opens the possibility of a previously unattempted goal - namely,

retrofitting Ul generation to an existing application.

Keywords

user interface generation; software mining; retrofitting; action research; interviews; adoption studies

1. Introduction

Many software projects spend a significant proportion of their time developing the User Interface
(UI). Research in the early 1990s found that some 48% of application code and 50% of application
time was devoted to implementing Uls (Myers 1992). These figures are still considered relevant
today, more so with the increased demands of richly graphical and web-based Uls (Jha 2005; Daniel
et al. 2007), therefore any degree of automation in this area has clear benefits. This automation is
difficult because Uls bring together many qualities of a system that are not formally specified in any
one place, or are not specified in a machine-readable form. For example, a dropdown widget on a
UI screen may have a data type specified in a database schema, a range of choices drawn from
within application code, and a look and feel specified by a human-readable design document.
Bringing these diverse characteristics together to enable automatic Ul generation is a significant
challenge and research in this field dates back over two decades. The work was given increased
urgency with the emergence of ubiquitous computing (Weiser 1993) and its proliferation of
different UI devices with widely varying capabilities. Approaches to date can be broadly grouped
into three categories: interactive graphical specification tools, model-based generation tools, or
language-based tools (Myers 1995). Each has significant disadvantages which have limited its
success in industry (Myers, Hudson & Pausch 2000).

The main disadvantage of the first two approaches — interactive graphical specification tools and
model-based generation tools — is that they inherently require software developers to restate
information that is already encoded elsewhere in the application. This duplication is both laborious
and a source of errors, as the developer must take care that the application code and the UI model
stay synchronised (Jelinek & Slavik 2004). The main disadvantage of the third approach —
language-based tools — is that generally programming languages 'are not sufficient enough for
complex UI modelling. To completely and formally depict the UI composition and behaviour, new
attributes and properties are needed to describe the object data members' (Xudong & Jiancheng
2007, p. 540). Without these new attributes and properties, language-based tools must resort to
generalised heuristics when generating their Uls. These generalisations invariably mean 'the
generated User Interfaces [are] not as good as those created with conventional programming

techniques' (Myers, Hudson & Pausch 2000, p. 13).

UI generation has not experienced the same wide industry adoption and standardisation as, say,
Object Relational Mapping (ORM) (JPA 2008). We claim that this is because existing approaches
are impractical, not because the issue itself lacks urgency. A series of interviews conducted with
practitioners across industry segments and software platforms (Kennard, Edmonds & Leaney 2009)

found common experiences of duplication (Jelinek & Slavik 2004), common experiences of bugs

caused by it, and a common desire for it to be addressed. One interviewee confirmed "the problem
definitely exists. It's more from the business layer forward to the screen is the biggest problem
because there are things out there like [ORM] which do from, sort of, business layer down".
Another lamented that, when making a typical change to an enterprise system "the drudgery at the
moment is adding the Ul code, and adding the validation and giving that feedback. That's really
quite unpleasant. It's the most complex of all the steps, actually, depending on the magnitude of the
change". Some practitioners gave concrete examples "we've got a BigDecimal (Gosling 2005), and
[the back-end has] set the scale to 8 but the GUI puts through 10, it [gets silently rounded and]
passes all the way through. That becomes a real issue because it's really hard to find. That's caused
us huge problems before". One developer reflected "it's a fairly established software engineering
principle that the more you have to repeat something [defining fields in both the business layer and
the UI layer] the higher the chances there's going to be an error in the code". Finally one engineer
summarised "every developer who writes anything more than a Hello World application will have
this problem. Most developers encounter this problem on a daily basis as a constant friction in their
daily work". During publication of our 2009 paper, reviewers reframed our interviews in an
academic context “the work is exceptionally well motivated... it is important for the [research]
community to hear... nobody in a senior position in a software company today is going to not be
aware of this problem and the various hacks, workarounds, and band-aids used to cover up the pain
that it causes (at least not in a successful software company). Again, academics may be surprised by
some of the comments and the gravity of the concerns, but I wasn't; this is a serious problem and

there are partial solutions out there that various people employ with varying degrees of success”.

Having established the urgency of the problem, the authors set out to address the impracticalities
with existing Ul generation approaches. We sought a well-motivated, well-justified approach guided
by practice based research and human centred design approaches. These included open ended
interviews, adoption studies and close collaboration with industry practitioners, as described in
section 2. In doing so we identified five key characteristics we believe are necessary for any Ul
generation technique to achieve wide adoption or standardisation. Many of these characteristics
seem ignored by current approaches. The full adoption studies will be published at a later date, but
we discuss each characteristic in detail in section 3. In addition, we discovered an emergent feature
of these characteristics is that they open the possibility of retrofitting - a previously unattempted

goal - which we explore in section 4. Finally, we discuss future work in section 5.

2. Methodology

Given our strong focus on industry practice, and ensuring any UI generation is practical, it was

important to engage our target audience early and often. One industry-based approach effective in
doing this is iterative development. There are various definitions of iterative development, but all
are common in trying to avoid a single-pass, document-driven, gated-step approach (Larman &
Basil 2003). The iterative development methodology has interesting parallels to the research
methodology of action research (Dick 2000). Indeed, action research's definition of a cycle of 'plan,
act, observe, reflect, then plan again' (Kemmis & McTaggart 1988) would be a fitting description
for iterative development. The outcomes from each cycle drive the planning for the next cycle, both
in terms of expanding those areas that worked well and revisiting those that were less successful.
This is particularly effective when either the problem or the solution are not well defined, as they

afford the work the agility to change as its goals become clearer.

Our research methodology employed action research as a framework within which to formalise
iterative development, allowing the work to be both accessible to, and guided by, observations from
both industry and the research community. Observations were gathered through forum messages,
open-ended interviews using simplified grounded theory (Dick 2005) and adoption studies'.
Adoption studies were gathered retroactively from companies who had independently discovered
and decided to apply our work, of their own volition, based on publicity from previous action
research cycles. Companies were discovered through message forums then contacted to solicit a
study of their experiences. We conducted seven such studies in all, ranging from private
biotechnology and telecommunications companies, to government departments and academic

institutions.

The last phase of each action research cycle reflected upon the observations from interviews and
adoption studies as drivers for the next cycle. Action research delineates an explicit 'reflect' phase
(Kemmis & McTaggart 1988) so as to bring academic rigour to the proceedings. During the 'plan’,
'act' and 'observe' phases, reflection happens 'in action' (Schon 1983) with the 'action present'
measured in minutes or hours. During the 'reflect' phase, however, the 'action present' is much more
deliberate, being measured in days or weeks, which lends more diligence and formality to the
Validity, Verification and Testing (VVT) of the research. It facilities the reconsideration of all design
decisions, implementation details and observations from the preceding action research cycle in a

holistic light, leading to key new insights.

This practice based methodology, conducted across three action research cycles over a period of

1 Adoption studies are interviews focussed on adoption of a technology within an interviewee's organisation. The goal
is to draw out all experiences and to understand usage and the environment in which the adoption occurred. The
interviewee is asked to discuss, and demonstrate, aspects of their adoption experience. The guiding questions include:
what led them to adopt the technology; have they used or built similar technologies in the past; what were some of the

most important features to them; where did they find the technology lacking.

three years, afforded us a breakthrough in our understanding of the problem domain. Our most
significant finding is the identification of five key characteristics any UI generation technique needs
before it can be practical in an industry setting. Notably, many of these characteristics seem ignored
by current Ul generators, which we believe is hindering their widespread adoption. The next section

presents our action research results in detail.

3. Characteristics of a Practical UI Generator

This section explains the five characteristics we believe, based on our action research cycles, are
key to a practical Ul generator. We have derived these characteristics through interviews, adoption
studies and close collaboration with industry practitioners. They can be summarised as: inspecting
existing, heterogeneous back-end architectures; appreciating different practices in applying
inspection results; recognising multiple, and mixtures of, Ul widget libraries; supporting multiple,
and mixtures of, Ul adornments; applying multiple, and mixtures of, UI layouts. We will justify
each of these characteristics in turn in the following sections. We will begin each section by first
framing the characteristic within the literature and within observations from our discovery research.
We will then move to justify each characteristic and discuss its technical details. Because of our
strong focus on a practical Ul generator, we will discuss these technical details in the context of our

own implementation, which we have called Metawidget (http://metawidget.org). This

implementation is the outcome of our action research, and the proof of our work.

Before we begin, however, it is important to first frame how the five characteristics fit together.
There are a number of ways they could be designed into a UI generator, though we would caution
against any approach based on presenting practitioners with multiple options or 'flags' - such
approaches likely underestimate the sheer volume of variations and combinations the characteristics
need to accommodate. In our particular implementation we have implemented the five
characteristics as a pluggable pipeline (Vermeulen, Beged-Dov & Thompson 1995) as shown in
figure 1. Practitioners can plug in alternate implementations, or custom implementations, of each
characteristic. This allows our implementation to accommodate the volume of variability while

avoiding the performance overhead and maintenance cost of an exponential combination of 'flags'.

http://metawidget.org/

Metawidget Inspector InspectionResultProcessor WidgetBuilder WidgetProcessors Layout
asks for inspection N
Lt
inspects
business object :|

¢ returns inspection result

asks to process M

sonts result ‘—_|
¢ returns sorted result

loop ' [for each widget]

asks for widget

%
Fi

chooses |
hest widget

W returns chosen widget

asks to process

attach binding ‘—_|

attach validation ‘—_|

...Btc ‘—_|

returns final widget

asks to layout W
Ld

]]

]]

i i |

! ! lays out widget ;“—_|
i i

]]

| |

Inspector

InspectionResultProcessor WidgetBuilder | WidgetProcessors ‘ Layout

Metawidget I

Figure 1: Metawidget pipeline, showing the five characteristics

The leftmost 'lifeline' in the UML sequence diagram (the Metawidget) serves to coordinate the
others and is not considered part of the pipeline. The remaining five UML lifelines correspond to
the five key characteristics we have identified from our action research. The UI generation proceeds
in a well-defined fashion along each stage of the pipeline, from left to right. Each stage is
pluggable. As an implementation detail, each stage is also immutable. This helps with memory

consumption and performance when multiple Metawidgets are used in the same UL

Each of the UML lifelines and their corresponding characteristic is discussed in turn in the sections

to follow. We begin with the first UML lifeline, the 'inspector’.

3.1. Pluggable Inspectors

Most Ul generation solutions dictate that practitioners provide the generator with a centralised,
single source of truth (SSOT). The solutions do this by defining their own Ul modelling language or
graphical builder tool, then require the practitioner to use their tool to define the UI. For example,

UsiXML (Vanderdonckt et al. 2004) consists of “a User Interface Description Language (UIDL)

that is a declarative language capturing the essence of what a Ul is or should be independently of
physical characteristics. UsiXML describes at a high level of abstraction the constituting elements
of the UI of an application: widgets, controls, containers”. GUMMY (Meskens 2008) is designed
“in a similar way to traditional GUI builders in order to allow designers to reuse their knowledge of
single-platform user interface design tools... there is a toolbox showing the available user interface
elements, a canvas to build the actual user interface and a properties panel to change the properties
of the user interface elements on the canvas”. Internally, “GUMMY builds a platform-independent
representation of the user interface and updates it as the designer makes changes. This allows for an
abstract specification of the user interface” which it then uses to drive Ul generation for multiple
physical devices. However as Jelinek and Slavik (2004) observe, “a common disadvantage [of
modelling languages and graphical builder tools] is the fact that the user interface is defined
explicitly and separately” and therefore “the application and the corresponding [UI] model need to
be kept consistent”. Prat et. al (1990) agree, finding that in practical application design “the [back-
end] requires a considerable amount of knowledge [much of which is] similar to that required by the

[UI] modules”.

Some UI generation solutions acknowledge this shortcoming and seek to reuse existing information
already embedded in an application's architecture. Unfortunately they still require this to be rigidly
centralised. For example, Naked Objects dictates “all the functionality associated with a given
entity [must be] encapsulated in that entity, rather than being provided in the form of external
functional procedures that act upon the entities” (Pawson 2004). Most industry systems do not
adhere to such a 'behaviourally-complete' methodology. Rather, they use what Firesmith (1996)
calls “dumb entity objects controlled by a number of controller objects”. They do this in order to
benefit from a rich ecosystem of technologies. What Firesmith terms 'controller objects' industry
practitioners would term, but not be limited to, validation subsystems, workflow subsystems, rule
engines and Business Process Modelling (BPM) languages. Indeed, as Pawson himself later
concedes “most object-oriented (OO) designs, and especially object-oriented designs for business
systems, do not match this ideal of behavioural-completeness”. It is important to appreciate this is
not because most business systems are poorly designed. Rather, they are seeking to leverage
functionality provided by the large number of mature subsystems available in industry, in order to
increase productivity and reduce development cost. It is still possible to have an SSOT whilst being
decentralised amongst multiple subsystems, provided there is no overlap in the decentralisation (i.e.
the workflow subsystem is concerned with different aspects of the application to the validation

subsystem).

Our adoption studies underscored this point with industry practitioners. One commented “many

frameworks or tools enforce the designer's vision on how solutions should be architected. What 1
liked about [your implementation] is that I could drop it in whatever architecture I was using”. The
phrase 'whatever architecture I am using' turned out to be critical, because real world architectures
were found to vary widely - dependent on both hard, business requirements and softer, aesthetic

judgements.

As an example of a business requirement, many architectures abstract their UI data into OO classes.
It is certainly possible to generate Uls based on instances of those classes - indeed, this is the
approach Naked Objects mandates. But business requirements often prevent this approach and it
was found that being able to plug in a company's own back-end inspector was fundamental to the
usefulness of a UI generator. One adoption study had defined the UI in their own, proprietary XML.
“[Being able to write our own] inspector that knows our XML schema and can find all restrictions
of the currently inspected field and add that to the attributes returned [was a key strength]”. Another
study had used rules in a database: “The main feature for us was the possibility to dynamically,
based on rules stored in our database, create input screens based on user selections... it was
important it supported our back-end. Being able to plug-in our back-end inspectors gave us the
flexibility needed, it is impossible to support everyone's requirements [out of the box]... otherwise
we probably would not have even tried it”. Another adoption study used a mixture of third-party
libraries: “we work with JDO, OVal, and some custom annotations, so being able to extend was a
must for us”. Another adoption study “we did not want to place view stuff into the model, and we
did not want to place it in an [external] XML file either, because we would have to replicate the
property name. [Instead] we built [an inspector] based on our properties files”. By 'properties files'
the team is referring to reading Ul information from localization (internationalization) resource
bundles. These examples demonstrate there are a multiplicity of sources of Ul metadata.
Furthermore, it is not difficult to posit other useful sources, such as Web Services Description

Language files (WSDL 2001).

A common example of an aesthetic judgement revolved around the mixing of presentation
information with business logic. Some adoption studies reported “there was some spirited debate [in
the development team], since [annotating the business objects can] degrade gracefully if not in use.
It still, to us, seemed cleaner to put Ul-specific code outside of our business objects [in XML
files]”. Another said “business objects should be neutral regarding presentation - I am a supporter of
separated tiers”. But other adoption studies disagreed “while I appreciate the power within the XML
inspectors, I used annotations to configure [my business objects]”. Another “I don't mind
[annotating], an annotation is just metadata”. Interestingly, one study considered it a matter of scale:

“for small projects it might not be a concern, so we find [the fact that it is supported] valid, but for

larger projects where the architecture is more important, usually we want to keep a clear separation

between layers, and it is not desirable to 'pollute' the model”.

It is important to note practitioners are not simply talking about supporting many different back-end
technologies. Rather, they are talking about being able to mix technologies, including custom
subsystems and alternate implementations of the same subsystem. The latter is less an issue in 'full
stack' proprietary software environments such as the Microsoft application stack, but in Open
Source enterprise ecosystems such as Java EE there are often dozens of competing implementations
of the same subsystem (Shan et al. 2006). There are even competing implementations of the core
language (e.g. Java versus Groovy versus Scala). Software architecture therefore involves a myriad
of choices, many of which have no 'right' or 'wrong', and opinions on which evolve over time. For
example, business rule engines are becoming increasingly popular (Rouvellou et al. 1999). Any Ul
generator that seeks to dictate, rather than adapt to, a system's architecture therefore has limited

practical value.

Our implementation addresses this characteristic of supporting mixtures of back-end technologies
by defining pluggable 'inspectors'. It defines a minimal 'Inspector’ interface and ships with a number
of implementations of this interface to support extracting metadata from different, heterogeneous
subsystems. The parent Metawidget (leftmost lifeline in figure 1) requests information regarding a
particular business object and it is the responsibility of each individual inspector to gather as much
information as possible about that business object from its particular subsystem. A current limitation
and open question of this approach is how to validate the completeness of the inspection. The issue

of completeness is ongoing work.

Returning to our theme of an SSOT, our implementation also supplies a Compositelnspector, named
after the composite design pattern (Gamma et al. 1995), to support combining the inspection results
from multiple inspectors into a more detailed whole result, as shown in figure 2. This more detailed
whole result forms a temporary centralised SSOT from the subsystems it is split across, so that it
can be used to drive Ul generation. This extraction and collation of metadata from multiple,

heterogeneous subsystems is commonly referred to as software mining?.

2 Software mining relates to the discovery of artefacts in code (Xie, Pei & Hassan 2007) for purposes such as
constructing domain ontologies (Grcar, Grobelnik & Mladenci 2007) or identifying call usage patterns (Kagdi, Collar &
Maletic 2007). This is distinct from the statistical collection of information to understand relationships (in for example,
customer relationship management) which is typically referred to as data mining (Cao et al. 2010; Li, Zhang & Wang

2006).

Metawidget Compositelnspector Inspectar #] Inspector #2 Inspector #3

asks for inspection

w

1T T--—

T

asks for inspection

Y
P
returns inspection result

stores as
first result

-~

asks for inspection

returns inspection result
|
combines with !

first result !
|
|
|
|
|

asks for inspection

A
Ldf

returns inspection result

combines with
first two results

S I '___T___ Y S

i‘ returns combined inspection result

Metawidget Compositelnspector Inspector #1 Inspector #2 Inspector #3

Figure 2: Compositelnspector implements Software Mining

It is often said in software development that each design decision should “pull its weight” (Bloch
2001). That is to say, it is a validation of good design if each decision provides multiple advantages
that demonstrably outweigh the inevitable disadvantage of its added complexity. Encouragingly,
several of our five characteristics demonstrate such emergent advantages. For inspectors, an
emergent advantage of Compositelnspector is that it becomes possible to run remote inspections.
Multiple groups of inspections can be run remotely on different application tiers, passing the
inspection results back to the Ul in a well-defined, secure manner, where they can be recombined.
This is important in real world architectures where often the UI layer is prohibited from, say,

directly accessing the database schema.

To reiterate, throughout section 3 we are referencing our own particular implementation of each
characteristic in order to provide a deeper analysis. Clearly, however, ours is not the only approach.
For example, the Naked Objects team report (Haywood 2008.1) they are introducing pluggable
'facets' as a method of supporting mixtures of back-end technologies, including XML and database
sources. This somewhat relaxes their 'behaviourally-complete' methodology and suggests some

convergence (Haywood 2009).

This section has demonstrated that supporting a mixture of heterogeneous sources of Ul metadata is
an important characteristic for a practical UI generator. Having retrieved and collated all available
metadata from the back-end subsystems, it is generally necessary to post process it. This

characteristic is discussed in the next section.

3.2. Pluggable Inspection Result Processors

The raw inspection result returned from the inspector invariably needs post processing before it is
suitable for consumption. For example, the fields generally need to be arranged in a business-
defined order. There are various ways to achieve this, dependent on the metadata source. For
example, if the data is sourced from an XML document its nodes are inherently ordered (XML
2008). But if the data comes from JavaBean properties in Java class files then it will not retain any
ordering information (Gosling 2005) so one must be imposed. In the latter case, our adoption
studies showed that the method used to impose ordering is open to practitioner taste. By default our
implementation uses a 'comes after' approach, whereby each business field can specify the field that
immediately precedes it. But some adoption studies reported "I would rather give the properties
priorities so that I can say 'this one comes first' instead of 'this one comes after that other one'. It's
just more natural to me". Equally, the Naked Objects team reports “by way of comparison (and as
an alternative idea), the Naked Objects programming model uses an annotation called
@MemberOrder, which takes an ordering in Dewey decimal notation. So, we have

@MemberOrder("1.1")” (Haywood 2008.2).

Such explicit field ordering at the business model-level has disadvantages, however, as one
practitioner noted "adding [field ordering information] to basically every field of your business
model strongly reduces clarity... one of the key principles of [pluggable inspectors] is the possibility
to directly use your unchanged domain objects [but this] doesn't really follow that principle”. It is
also less flexible in cases where “one wants to automatically create many different views based on a
single business object with components of different sequence and visibility”. The alternative,
ordering the fields at the Ul-level, introduces duplication - re-stating the fields used in a business
object (Jelinek & Slavik 2004) - and compromises polymorphism - the Ul needs to statically know
the fields in advance - but practitioners advocated both sides: “I agree, the default behaviour
[model-level ordering] should be as it is now... still, I see [Ul-level ordering] as an advantageous

option for cases with specific concerns such as flexibility".

Field ordering, then, whether specified by the back-end or the front-end, must be pluggable.
Another example of an inspection result post processing operation, open to similar interpretations of
practitioner taste, is excluding fields: should the model-level dictate which fields are to be excluded
from the UI, or should this be decided on a per-screen basis? Most likely, a combination of both
would be required — some clearly inappropriate fields, such as database primary keys, should be
excluded from the UI at the model-level whereas other fields may need excluding on a per-screen,

or per-user-role basis. Such post processing requirements are commonplace and a Ul generator that

does not accommodate different practitioners' preferred approaches would limit its appeal.

Our implementation addresses this characteristic of supporting multiple ways to post process the Ul
data by defining pluggable ‘'inspection result processors’. It defines a minimal
'InspectionResultProcessor' interface and ships with a number of implementations of this interface
to support post processing metadata. Distinct from inspectors, which are designed to be detached
from the UI and executable on application tiers inaccessible to the UI, InspectionResultProcessors
maintain a reference to the current Ul page. This is required for the aforementioned ability to

implement Ul-level ordering and exclusion.

This section has demonstrated that supporting a variety of ways to post process Ul metadata is an
important characteristic for a practical Ul generator. Once post processing is complete, the

inspection result is ready to drive the Ul generation, as discussed in the remaining three sections.

3.3. Pluggable Widget Builders

An SSOT acts as a valuable starting point for UI generation. We have discussed how, in industry,
this metadata is seldom centralised but rather must be brought together from disparate sources.
There does not appear to be any movement among industry systems to converge this situation. On
the contrary, the movement is generally towards additional types of subsystems, such as business
rule engines (Rouvellou et al. 1999). Similarly, and despite research community ideals to the
contrary, industry Ul frameworks continue to diverge. Most notably, the Web browser does not

appear to be the ubiquitous UI for which many were hoping.

For example, when Apple debuted their iPhone in 2007, they originally advocated their Safari Web
browser as the recommended way to develop applications for the mobile device. A year later,
however, the pressure for native Uls was recognised and a traditional SDK was released. This
allowed better performance and access to device-specific hardware such as accelerometers and
third-party peripherals (Square 2010). The Google Android mobile platform similarly supports
native Ul applications in addition to browser-based ones. Even if the browser were to become the
ubiquitous U, the plethora of Web frameworks and approaches to Web development (Shan et al.

2006) suggest there will not be a convergence of Ul platforms in the near future.

This need to support a variety of front-end frameworks was apparent in several adoption studies.
One reported: “We needed to integrate with a Spring MVC app, and in the future we may want to
integrate with some existing Swing applications... also possibly Java Server Faces (JSF)”. Another:
"if I'd had to [design my architecture] differently because of [your implementation] I would have

been unhappy. As things are I was just able to treat it as a normal Swing widget which was nice".

Another important requirement for a UI generator is that it support third-party, or custom, widgets.
This is important not only for flexibility but also robustness. For example, a frequent problem when
developing Web applications is ensuring compatibility across browsers. By leveraging existing
widget libraries, rather than attempting to generate HTML directly, a UI generator can delegate all
issues of browser incompatibility to the widget library — which has typically already been vetted in
a variety of production environments. An adoption study from an earlier action research cycle
criticised “if you have a more exotic GUI component used for certain properties, [your
implementation requires] more work needed to get that to render, as opposed to simply creating the
component in your GUI layer”. After we improved this, adoption studies from later action research
cycles reported: "We wrote our own widget builder.... [to use custom] components we developed

and Metawidget instantiates them”.

Implicit to this requirement to support third-party widget libraries is the ability to mix multiple
third-party widget libraries in the same Ul, as shown in figure 3. Most third-party libraries only
specialise on a certain set of widgets, rather than trying to replace every widget the platform

provides.

»
5 AVANTSOLUTIONS

HOME | ADMIR

Standard widget

Reports for ABC e S . _
COH?{J&H}/ Date of repurtpgeneratmn zwwzuju « Date pICker Wldget
’ - from widget library #1
mport File
MBR: [(Browse.. | P
ACL and M5 Browse: <4

File upload widgets

from widget library #2

Figure 3: Mixing multiple widget libraries in a Ul

Our implementation addresses this characteristic of supporting mixtures of widget libraries by
defining pluggable 'widget builders'. It defines a minimal 'WidgetBuilder' interface and ships with a
number of implementations of this interface to support popular Ul frameworks, such as the
aforementioned Spring MVC, Swing and Java Server Faces. Notably, our implementation also
supplies a CompositeWidgetBuilder, named after the composite design pattern (Gamma et al. 1995),
to support combining the widget libraries from multiple WidgetBuilders. The ordering of the
WidgetBuilders is significant, so that widget choice can prefer one third-party library's widgets over

another, or fall back to the default platform widgets, as shown in figure 4.

Metawidget CompositeWidgetBuilder I‘ WidgetBuilder #1 I WidgetBuilder #2 I| WidgetBuilder #3

asks for widget

%
7]
asks for widget

~_____

returns null

asks for widget

b
Ld

returns widget

Y S

returns widget

I B

Metawidget CompositeWidgetBuilder I‘ WidgetBuilder #1 I WidgetBuilder #2 I| WidgetBuilder #3

Figure 4: CompositeWidgetBuilder combines multiple widget libraries

As with inspectors, widget builders demonstrate emergent advantages. Specifically, they present a
compelling use case for practitioners to adopt UI generation. Once the developer has delegated their
widget creation to a widget builder, it becomes possible to plug in new widget libraries as they
become available — either new versions of existing libraries, or competing libraries offering more
desirable widgets. For example, a third-party widget library may be released that offers a 'colour
picker' widget with a user-friendly colour wheel. Imagine a practitioner has an application whose
existing approach is to present a text field constrained to only accept hexadecimal input in RGB
format (e.g. #ff00ff). The text field works, but the practitioner decides the colour wheel is more
usable (it doesn't require the user understand hexadecimal, for one). Using widget builders, the
practitioner would simply need to insert a WidgetBuilder for this new widget library as the first in a
CompositeWidgetBuilder's list of priorities. Every screen in the application that previously used the
hexadecimal text field would be immediately upgraded to use the colour picker, and this would
happen automatically across the entire application — a significant saving in practitioner time over
upgrading each screen manually. Notably, the WidgetBuilder itself could be provided by the widget
library author, their incentive being to increase ease-of-adoption of their library. This reasoning
extends to other areas of our pipeline too, such as inspectors, widget processors and layouts
(covered in subsequent sections): an author of a new product, such as a business rules engine, a
validation subsystem, or a layout manager, could increase its install base by providing Ul generator
plugins for it — alleviating the need for a practitioner to learn much of their product's API and
significantly easing its adoption. Such plugins are not unprecedented, and grow the ecosystem of a
product segment by levelling the playing field for new entrants. For example, database vendors
typically provide plugins to popular ORMs so as to ease adoption amongst practitioners using those

ORMs.

This section has demonstrated that supporting mixtures of widget libraries is an important

characteristic for a practical Ul generator. Widget builders simplify the process of choosing the

most appropriate widget for a business field. Simply choosing the widget is rarely sufficient,
however. There are generally a host of supporting technologies that also need to be attached, such as
data validators, data binding frameworks, and event handlers. This characteristic is discussed in the

next section.

3.4. Pluggable Widget Processors

In raw form, a widget is not likely to be suitable for inclusion in a UI. For example, end users
interacting with a raw text field are able to enter arbitrary text. However the business requirement
may be for, say, a credit card number. Widgets therefore need to be further adorned with data
validators, data binding frameworks and event handlers. Of particular note is that some of these

mechanisms, such as validators, may come from a different third-party library than the raw widget.

Processing such adornments is made difficult because of a general problem with automatic
generation of any kind, not just UI generation: generated code is opaque to the practitioner. It is
difficult to reference and attach mechanisms to objects that are not well-known in advance. One
early adoption study identified this as “when you want to customise [the generated widgets], like
replacing or adding more info to [them] you have to refer to them by property names. We have this
problem not only for [UI generation], but when you have a lot of dynamic stuff [such as ORM
frameworks]. It would be nice to either solve this or offer a solution for that”. Another gave a
concrete example, needing “a way to attach event handlers to widget value changes. This would
allow you to respond to change... not just do a bi-directional binding (for example you could enable
a save button that starts disabled)”. A third adoption study had custom mechanisms they wanted to

attach: “[we'd like to be] able to integrate our own validation and custom rendering of components”.

Practitioners require a pluggable mechanism that allows post processing of a built widget.
Critically, this mechanism must expose the same richness of metadata as the original widget
building did, so that widgets may be identified not just by their name but also by their type, their

constraints, their labels or any amount of other metadata.

Our implementation addresses this characteristic by defining pluggable 'widget processors'. It
defines a minimal 'WidgetProcessor' interface and ships with a number of implementations of this
interface to support popular adornments, such as the aforementioned data validators and data
bindings, as shown in figure 5. Many of these implementations are defined by third-party libraries,
not by the same base Ul library as the raw widget. Notably the list of widget processors is
maintained not by an immutable CompositeWidgetProcessor, as with Composite WidgetBuilder, but
by a mutable list. This is important so that individual Ul screens can dynamically add widget

processors that, say, attach event handlers. The methods these event handlers call are, by definition,

tied to a particular UI screen rather than being immutable across the entire application. If we were
to implement an immutable CompositeWidgetProcessor we would be unable to add such event
handler processors without invalidating the immutability of the overall composite. Equally however
many other types of widget processor, such as data validators and data bindings, are not tied to a
particular screen and are immutable. We do not want to unnecessarily instantiate multiple instances

of such processors. Designing the widget processors as a mutable list, therefore, allows us the best

of both approaches.
Metawidget BindingProcessor I ConverterProcessor I‘ ValidatorProcessor

i asks to process J i i

| inding | | |

| adds data binding ,“—_| | |

| | | |

'y returns bound widget ! | |

" | 1 1

| asks to process ! N |

| | g |

I I adds converter I

a a = a
L returns widget with converter | i

N T 1

| asks to process i | J

i i i] Fi

! ! ! adds validator t‘
i i | :

14 ! returns widget with validator !

| | | |

Metawidget BindingProcessor I ConverterProcessor I‘ WalidatorProcessar

Figure 5: WidgetProcessors allow post processing of a widget

This section has demonstrated that supporting a variety of ways to post process Ul widgets is an
important characteristic for a practical UI generator. Following post processing, the widget is robust
enough to be placed in front of the user. However, it still remains to lay it out appropriately among

its siblings. This final characteristic is discussed in the next section.

3.5. Pluggable Layouts

Having inspected, built and processed the final widget its layout on the screen is perhaps the most
intractable issue in Ul generation. In particular, it significantly detracts from the practicality of
automated generation if it in any way compromises the final product in usability, or even in
aesthetics (Myers, Hudson & Pausch 2000, p. 13). This realisation exposes a myriad of small details
around UI appearance, navigation, menu placement and so on. The problem is so difficult, in fact,

we believe it insoluble.

Our implementation sidesteps the issue by sharply restricting the bounds of its generation (Kennard

& Steele 2008). Specifically, it does not attempt to generate the entire UI. Rather, it focuses on
generating only a small piece of it — the 'inside' of each page, the area around the fields themselves.
Ultimately, this is the only piece that is actually constrained by the back-end architecture. The Ul
appearance, navigation, menu placement and overall usability are far more device-specific, not to
mention specific to the aesthetic taste of the UI designer. We explicitly keep these out of scope. Our
adoption studies confirmed: "I think that although it is theoretically possible to solve this
[automatically], in practice, it is generally not feasible to re-write the view into different
technologies [automatically]. Even in scenarios where you have to design, for instance, the same
screen with different versions for desktop and mobile, the screen cannot fit/support the same
functionality". Human-based, aesthetic judgements must be made as to what can fit, what can be

supported, and what is most usable.

As testament to how impractical generation of an entire Ul is, even after restricting Ul generation to
just the area around fields we find there is still a formidable degree of variability. Fields may
typically be arranged in a 'column', with the widget on the right and its label on the left. But other
times the practitioner may want two or three such columns side by side. If so, they may need some
widgets — such as large text areas — to span multiple columns. Or they may abandon columns
altogether and want the fields arranged in a single, horizontal row. Furthermore, it is not difficult to
posit other real world arrangements, such as right-to-left arrangements for the Arabic world. It is
important to accommodate this variety if the generator is to achieve the exact look the practitioner
desires. If it cannot achieve that exact look, the practitioner is compromising usability — the most

determining factor of a UI — for the sake of automatic generation (Myers, Hudson & Pausch 2000,
p. 13).

Our implementation addresses this characteristic of supporting multiple ways to arrange widgets by
defining pluggable 'layouts'. It defines a minimal 'Layout’ interface and ships with a number of
implementations of this interface to support different layouts. Notably, our implementation also
supplies a LayoutDecorator, named after the decorator design pattern (Gamma et al. 1995), to
support decorating one layout with another. For example, fields may need to be divided into
sections separated by headings, or sections divided into tabs in a tab panel. Such concerns should be
orthogonal to the field arrangement themselves (i.e. one column or two columns, labels to the left of
the widgets or the right) to curb a combinatorial explosion of UI options, as shown in figures 6 and

7.

|=;’| Metawrdpetpintonial __J J Q1 I=;’l metawidpeiplntorial __J J ﬂ1

Person ﬂﬁ‘

| Name | Contact Detail Name

Firstname: | | Firstname: | |
Surname: | | Surname: | |

Contact Detail

Telept | |

Figure 6: Layout decorated with tabs inside Figure 7: Layout decorated with section headings

section headings inside tabs

Adoption studies informed and agree the benefits of achieving parity between the Ul designer's
intent and the automatically generated Ul are invaluable: “It is really hard to keep consistency,
visual or functional standards when building [a] GUI in a large team. However, when it is generated

dynamically, the rules are centred and even the customisation is somehow controlled”.

As with inspectors and widget builders, layouts further demonstrate emergent advantages.
Specifically, it becomes possible to mix layouts from third party widget libraries. Third party
libraries often supply 'layout widgets' in addition to their data entry widgets. For example they may
provide collapsible panels. If the practitioner is accustomed to using these layout widgets, the Ul
generator must support them or it will not be able to achieve parity with the original UI design. In
addition, leveraging layout widgets affords the inherent robustness of delegating Web browser

incompatibility issues, as discussed in section 3.3.

This section has demonstrated that supporting multiple ways to arrange widgets is an important
characteristic for a practical Ul generator. This, combined with the other four characteristics
demonstrated in previous sections, results in a richly flexible Ul generator. As shown, many of these
five characteristics individually exhibit emergent advantages. However, when all five are combined
there is a further emergent advantage — one that appears unique in the literature. We turn to this

advantage in the next section.

4. Retrofitting

The previous section demonstrated five characteristics that are necessary for a practical Ul
generator. In addition, it showed how these characteristics give rise to a number of emergent

advantages, which in themselves are an encouraging validation of their value. However there is a

further notable advantage that emerges when all five characteristics are present in a Ul generator -
an advantage that is seldom even discussed, much less targeted, in the literature. Specifically, these

five characteristics combined make it possible to retrofit Ul generation into existing applications.

Retrofitting is a laudable but largely unpursued goal. It is laudable because the number of existing
applications, both mature and currently under development, far outweighs the number of 'green
field' applications that could reasonably be expected to adopt a new UI generator. The ability to
remove boilerplate code from existing applications, in addition to preventing boilerplate code in
new ones, has potential savings of many orders of magnitude. Retrofitting is largely unpursued
presumably because it requires a level of Ul generator flexibility, particularly flexibility towards
back-end architectures, that is difficult to target. However several adoption studies successfully
applied our implementation to existing applications. This included them being able to partially
migrate applications one screen, or even one piece of a screen, at a time. This prompted us to
conduct internal experiments retrofitting our implementation to other projects. For example, we
chose three applications from the samples included with the Open Source JBoss Seam distribution

(JBoss Seam 2010). We discovered the retrofitting activity encompassed three main areas.

First was to explore what existing metadata could be leveraged from the application's back-end
architecture. For example the Seam Hotel Booking sample contained some Ul metadata embedded
within its persistence subsystem, some within its validation subsystem, and some within a scripting
language. Conversely, the Seam DVD Store sample contained Ul metadata embedded within its
BPM subsystem. We were able to plug in inspectors for each of these. The second activity was to
introduce Ul metadata that did not exist in the application but was required for generation. For
example business field ordering information had to be incorporated. The final activity was to
replicate the application's original UI appearance. We were able to plug in widget builders for this.
In particular, we were able to plug in a mixture of widget builders to replicate the application's

original choice of two third-party widget libraries.

Overall there was a significant amount of existing code that could be removed, though notably some
new code also had to be introduced - such as field ordering information and configuration files.
Nevertheless, when comparing aggregate sizes of the files in the sample projects before and after
retrofitting, we realised between a 30% to 40% reduction in UI code through the introduction of our
implementation. For some individual files this metric was as high as 70%, as shown in figure 8. On
the left is the original XHTML source code for a single UI screen, and on the right the retrofitted
version (the source code is not meant to be legible in the figure, it suffices just to be able to discern
its structure). The red boxes and lines convey which portions of the original source were able to be

replaced, and their equivalent size in the retrofitted version.

This section has introduced retrofitting as an emergent advantage of the five characteristics
demonstrated in the previous section. The ability to retrofit existing applications is an encouraging
indicator of the overall value of the five characteristics. We now turn to this 'overall value' for our

final section.

Figure 8: Portions of code saved by retrofitting

5. Summary, Conclusions and Future Work

This article has emphasised the need for UI generation within mainstream software development,
and underscored impracticalities with existing approaches. It has employed practice based research
and human centred design approaches to identify five characteristics that are necessary for a
practical Ul generator. Interviews, adoption studies and industry collaboration suggest these
characteristics are key to the real world adoption of a generator. These characteristics can be
summarised as: inspecting existing, heterogeneous back-end architectures; appreciating different
practices in applying inspection results; recognising multiple, and mixtures of, UI widget libraries;
supporting multiple, and mixtures of, Ul adornments; applying multiple, and mixtures of, Ul
layouts. Many of these characteristics seem ignored by current Ul generators and we believe this is
hindering their widespread adoption. This article has further identified the impact of implementing
all five characteristics: they allow practitioners to retrofit Ul generation into existing applications.
This significantly broadens the range of applications amenable to Ul generation and increases its

value to practitioners.

This article has drawn several far reaching conclusions. First, that any UI generator that seeks to
dictate, rather than adapt to, a system's architecture has limited practical value. Second, it is
important to appreciate that the need for diversity in industry architectures is not because most
business systems are poorly designed. Rather, it is because business systems seek to leverage
functionality provided by a large number of mature subsystems available in industry, in order to
increase productivity and reduce development cost. Finally this article has emphasised that action
research, as a methodology for research and development, is fundamental to the usefulness of a

resulting product in supporting diversity and richness of practice.

Immediate future work will concentrate on further developing our Ul generator implementation.
There are many design decisions for which the five characteristics identified in this article could be
implemented either way. For example, there are opposing schools of thought whether generation
should be runtime based or statically generated. We also plan to continue evaluating our
implementation against real world business systems, to assess the degree to which those systems
can be retrofitted to reduce Ul code. A longer term goal is to standardise the five UI generation

characteristics, such that they can be adopted as part of mainstream UI development.

References

Bloch, J., 2001. Effective Java programming language guide, Sun Microsystems, Inc. Mountain
View, CA, USA.

Cao, L., Yu, P.S., Zhang, C. & Zhao, Y., 2010. Domain Driven Data Mining, Springer-Verlag New
York Inc.

Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, R. & Casati, F., 2007. 'Understanding UI
Integration: A Survey of Problems, Technologies, and Opportunities', [EEE INTERNET
COMPUTING, pp. 59-66.

Dick, B., 2000. 'A beginner's guide to action research’,
http://www.scu.edu.au/schools/gcm/ar/arp/guide. html

Dick, B., 2005. 'Grounded theory: a thumbnail sketch',
http://www.scu.edu.au/schools/gcm/ar/arp/grounded.html!

Firesmith, D.G., 1996. Use Cases: The Pros and Cons. Wisdom of the Gurus: A Vision for Object
Technology

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1995. Design patterns: elements of reusable
object-oriented software, Addison-wesley Reading, MA.

Gosling, J., 2005. The Java Language Specification, Addison-Wesley.

Grcar, M., Grobelnik, M. & Mladeni, D., 2007. 'Using text mining and link analysis for software'.

Haywood D., 2008.1. Comments section under
http://kennardconsulting.blogspot.com/2008/04/useful-bounds-of-automatic-ui.html

Haywood D., 2008.2. Comments section under
http://kennardconsulting.blogspot.com/2008/07/metawidget-javassist-versus.html

Haywood D., 2009. Comments section under http://www.theserverside.com/news/thread.tss?
thread id=58283#328193

JBoss Seam, 2010. http://www.seamframework.org

Jelinek, J. & Slavik, P., 2004. 'GUI generation from annotated source code', Proceedings of the 3rd
annual conference on Task models and diagrams, pp. 129-136.

Jha, N.K., 2005. 'Low-power system scheduling, synthesis and displays', Computers and Digital
Techniques, IEE Proceedings-, vol. 152, no. 3, pp. 344-352.

JPA 2008. http://jcp.org/en/jsr/detail7id=220.

Kagdi, H., Collard, M.L. & Maletic, J.I., 2007. 'Comparing Approaches to Mining Source Code for
Call-Usage Patterns', Proceedings of the Fourth International Workshop on Mining Software
Repositories.

Kemmis, S. & McTaggart, R., 1988. 'The action research planner'. Deakin University.

Kennard, R., Edmonds, E. & Leaney, J., 2009. Separation Anxiety: stresses of developing a modern

day Separable User Interface. 2" International Conference on Human System Interaction.
Kennard, R. & Steele, R. 2008, 'Application of Software Mining to Automatic User Interface
Generation', New Trends in Software Methodologies, Tools and Techniques, p. 244.

Larman, C. & Basili, V. R., 2003. 'Tterative and Incremental Development: A Brief History',
Computer, pp. 47-56.

Li, X., Zhang, S. & Wang, S. 2006, TIDWM Special Issue: Advances in Data Mining Applications',

International Journal of Data Warehousing and Mining, vol. 2, no. 3.

Manheimer, J.M., Burnett, R.C. & Wallers, J.A., 1989. A case study of user interface management
system development and application. Proceedings of the SIGCHI conference on Human
factors in computing systems: Wings for the mind , 127-132.

Meskens, J., Vermeulen, J., Luyten, K. & Coninx, K., 2008. 'Gummy for multi-platform user

interface designs: shape me, multiply me, fix me, use me', ACM, pp. 233-240.

Myers, B.A., 1995. 'User Interface Software Tools', ACM Transactions on Computer-Human
Interaction, vol. 2, no. 1, pp. 64-103.

Myers, B., Hudson, S.E. & Pausch, R., 2000. 'Past, present, and future of user interface software
tools', ACM Transactions on Computer-Human Interaction (TOCHI), vol. 7, no. 1, pp. 3-28.

Myers, B.A. & Rosson, M.B., 1992. Survey on user interface programming, ACM Press New York,
NY, USA.

Pawson, R., 2004. 'Naked Objects', Trinity College, Dublin.

Prat, A., Lores, J., Fletcher, P. & Catot, J.M., 1990. Back-End Manager: An Interface between a
Knowledge-based Front End and its Application Subsystems. Knowledge-Based Systems, vol.
3, no. 4.

Rouvellou, I., Degenaro, L., Rasmus, K., Ehnebuske, D. and Mc Kee, B., 1999. Externalizing
Business Rules from Enterprise Applications: An Experience Report. Practitioner Reports in
OOPSLA, vol. 99.

Schon, D.A., 1983. The Reflective Practitioner: How Professionals Think in Action, Basic Books.

Shan, T.C., Hua, W.W.,, Bank, W. & Wilmington, N.C., 2006. 'Taxonomy of java web application
frameworks', pp. 378-385.

Square 2010. http://www.squareup.com

Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D. & Florins, M., 2004.
UsiXML: a User Interface Description Language for Specifying Multimodal User Interfaces,
W3C Workshop on Multimodal Interaction, 19-20.

Vermeulen, A., Beged-Dov, G. & Thompson, P. 1995, 'The pipeline design pattern', OOPSLA ’95
Workshop on Design

WSDL 2001. http://www.w3.org/TR/wsdl

Weiser, M., 1993. 'Hot topics-ubiquitous computing', Computer, vol. 26, no. 10, pp. 71-72.

Xie, T., Pei, J. & Hassan, A.E., 2007. 'Mining Software Engineering Data', International Conference
on Software Engineering, pp. 172-173.

XML 2008. http://www.w3.org/TR/REC-xml

Xudong, L. & Jiancheng, W., 2007. 'User Interface Design Model', Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, 2007. SNPD 2007. Eighth

ACIS International Conference on, vol. 3.

Biography

Richard Kennard is a PhD student in the Faculty of Engineering and Information Technology at the
University of Technology, Sydney. He is an independent industry consultant with fifteen years

experience and an active member of the Open Source community.

John Leaney is an Adjunct Professor in the Faculty of Engineering and Information Technology at

the University of Technology, Sydney.

