
Towards a General Purpose Architecture

for UI Generation
Richard Kennard

Faculty of Engineering and

Information Technology

University of Technology, Sydney

rkennard@it.uts.edu.au

John Leaney

Faculty of Engineering and

Information Technology

University of Technology, Sydney

john.leaney@uts.edu.au

Abstract

Many software projects spend a significant proportion of their time developing the User Interface

(UI), therefore any degree of automation in this area has clear benefits. Such automation is difficult

due principally to the diversity of architectures, platforms and development environments. Attempts

to automate UI generation to date have contained restrictions which did not accommodate this

diversity, leading to a lack of wide industry adoption or standardisation. The authors set out to

understand and address these restrictions. We studied the issues of UI generation (especially

duplication) in practice, using action research cycles guided by interviews, adoption studies and

close collaboration with industry practitioners. In addressing the issues raised in our investigation,

we identified five key characteristics any UI generation technique would need before it should

expect wide adoption or standardisation. These can be summarised as: inspecting existing,

heterogeneous back-end architectures; appreciating different practices in applying inspection

results; recognising multiple, and mixtures of, UI widget libraries; supporting multiple, and

mixtures of, UI adornments; applying multiple, and mixtures of, UI layouts. Many of these

characteristics seem ignored by current approaches. In addition, we discovered an emergent feature

of these characteristics that opens the possibility of a previously unattempted goal - namely,

retrofitting UI generation to an existing application.

Keywords

user interface generation; software mining; retrofitting; action research; interviews; adoption studies

1. Introduction

Many software projects spend a significant proportion of their time developing the User Interface

(UI). Research in the early 1990s found that some 48% of application code and 50% of application

time was devoted to implementing UIs (Myers 1992). These figures are still considered relevant

today, more so with the increased demands of richly graphical and web-based UIs (Jha 2005; Daniel

et al. 2007), therefore any degree of automation in this area has clear benefits. This automation is

difficult because UIs bring together many qualities of a system that are not formally specified in any

one place, or are not specified in a machine-readable form. For example, a dropdown widget on a

UI screen may have a data type specified in a database schema, a range of choices drawn from

within application code, and a look and feel specified by a human-readable design document.

Bringing these diverse characteristics together to enable automatic UI generation is a significant

challenge and research in this field dates back over two decades. The work was given increased

urgency with the emergence of ubiquitous computing (Weiser 1993) and its proliferation of

different UI devices with widely varying capabilities. Approaches to date can be broadly grouped

into three categories: interactive graphical specification tools, model-based generation tools, or

language-based tools (Myers 1995). Each has significant disadvantages which have limited its

success in industry (Myers, Hudson & Pausch 2000).

The main disadvantage of the first two approaches – interactive graphical specification tools and

model-based generation tools – is that they inherently require software developers to restate

information that is already encoded elsewhere in the application. This duplication is both laborious

and a source of errors, as the developer must take care that the application code and the UI model

stay synchronised (Jelinek & Slavik 2004). The main disadvantage of the third approach –

language-based tools – is that generally programming languages 'are not sufficient enough for

complex UI modelling. To completely and formally depict the UI composition and behaviour, new

attributes and properties are needed to describe the object data members' (Xudong & Jiancheng

2007, p. 540). Without these new attributes and properties, language-based tools must resort to

generalised heuristics when generating their UIs. These generalisations invariably mean 'the

generated User Interfaces [are] not as good as those created with conventional programming

techniques' (Myers, Hudson & Pausch 2000, p. 13).

UI generation has not experienced the same wide industry adoption and standardisation as, say,

Object Relational Mapping (ORM) (JPA 2008). We claim that this is because existing approaches

are impractical, not because the issue itself lacks urgency. A series of interviews conducted with

practitioners across industry segments and software platforms (Kennard, Edmonds & Leaney 2009)

found common experiences of duplication (Jelinek & Slavik 2004), common experiences of bugs

caused by it, and a common desire for it to be addressed. One interviewee confirmed "the problem

definitely exists. It's more from the business layer forward to the screen is the biggest problem

because there are things out there like [ORM] which do from, sort of, business layer down".

Another lamented that, when making a typical change to an enterprise system "the drudgery at the

moment is adding the UI code, and adding the validation and giving that feedback. That's really

quite unpleasant. It's the most complex of all the steps, actually, depending on the magnitude of the

change". Some practitioners gave concrete examples "we've got a BigDecimal (Gosling 2005), and

[the back-end has] set the scale to 8 but the GUI puts through 10, it [gets silently rounded and]

passes all the way through. That becomes a real issue because it's really hard to find. That's caused

us huge problems before". One developer reflected "it's a fairly established software engineering

principle that the more you have to repeat something [defining fields in both the business layer and

the UI layer] the higher the chances there's going to be an error in the code". Finally one engineer

summarised "every developer who writes anything more than a Hello World application will have

this problem. Most developers encounter this problem on a daily basis as a constant friction in their

daily work". During publication of our 2009 paper, reviewers reframed our interviews in an

academic context “the work is exceptionally well motivated... it is important for the [research]

community to hear... nobody in a senior position in a software company today is going to not be

aware of this problem and the various hacks, workarounds, and band-aids used to cover up the pain

that it causes (at least not in a successful software company). Again, academics may be surprised by

some of the comments and the gravity of the concerns, but I wasn't; this is a serious problem and

there are partial solutions out there that various people employ with varying degrees of success”.

Having established the urgency of the problem, the authors set out to address the impracticalities

with existing UI generation approaches. We sought a well-motivated, well-justified approach guided

by practice based research and human centred design approaches. These included open ended

interviews, adoption studies and close collaboration with industry practitioners, as described in

section 2. In doing so we identified five key characteristics we believe are necessary for any UI

generation technique to achieve wide adoption or standardisation. Many of these characteristics

seem ignored by current approaches. The full adoption studies will be published at a later date, but

we discuss each characteristic in detail in section 3. In addition, we discovered an emergent feature

of these characteristics is that they open the possibility of retrofitting - a previously unattempted

goal - which we explore in section 4. Finally, we discuss future work in section 5.

2. Methodology

Given our strong focus on industry practice, and ensuring any UI generation is practical, it was

important to engage our target audience early and often. One industry-based approach effective in

doing this is iterative development. There are various definitions of iterative development, but all

are common in trying to avoid a single-pass, document-driven, gated-step approach (Larman &

Basil 2003). The iterative development methodology has interesting parallels to the research

methodology of action research (Dick 2000). Indeed, action research's definition of a cycle of 'plan,

act, observe, reflect, then plan again' (Kemmis & McTaggart 1988) would be a fitting description

for iterative development. The outcomes from each cycle drive the planning for the next cycle, both

in terms of expanding those areas that worked well and revisiting those that were less successful.

This is particularly effective when either the problem or the solution are not well defined, as they

afford the work the agility to change as its goals become clearer.

Our research methodology employed action research as a framework within which to formalise

iterative development, allowing the work to be both accessible to, and guided by, observations from

both industry and the research community. Observations were gathered through forum messages,

open-ended interviews using simplified grounded theory (Dick 2005) and adoption studies1.

Adoption studies were gathered retroactively from companies who had independently discovered

and decided to apply our work, of their own volition, based on publicity from previous action

research cycles. Companies were discovered through message forums then contacted to solicit a

study of their experiences. We conducted seven such studies in all, ranging from private

biotechnology and telecommunications companies, to government departments and academic

institutions.

The last phase of each action research cycle reflected upon the observations from interviews and

adoption studies as drivers for the next cycle. Action research delineates an explicit 'reflect' phase

(Kemmis & McTaggart 1988) so as to bring academic rigour to the proceedings. During the 'plan',

'act' and 'observe' phases, reflection happens 'in action' (Schön 1983) with the 'action present'

measured in minutes or hours. During the 'reflect' phase, however, the 'action present' is much more

deliberate, being measured in days or weeks, which lends more diligence and formality to the

Validity, Verification and Testing (VVT) of the research. It facilities the reconsideration of all design

decisions, implementation details and observations from the preceding action research cycle in a

holistic light, leading to key new insights.

This practice based methodology, conducted across three action research cycles over a period of

1 Adoption studies are interviews focussed on adoption of a technology within an interviewee's organisation. The goal

is to draw out all experiences and to understand usage and the environment in which the adoption occurred. The

interviewee is asked to discuss, and demonstrate, aspects of their adoption experience. The guiding questions include:

what led them to adopt the technology; have they used or built similar technologies in the past; what were some of the

most important features to them; where did they find the technology lacking.

three years, afforded us a breakthrough in our understanding of the problem domain. Our most

significant finding is the identification of five key characteristics any UI generation technique needs

before it can be practical in an industry setting. Notably, many of these characteristics seem ignored

by current UI generators, which we believe is hindering their widespread adoption. The next section

presents our action research results in detail.

3. Characteristics of a Practical UI Generator

This section explains the five characteristics we believe, based on our action research cycles, are

key to a practical UI generator. We have derived these characteristics through interviews, adoption

studies and close collaboration with industry practitioners. They can be summarised as: inspecting

existing, heterogeneous back-end architectures; appreciating different practices in applying

inspection results; recognising multiple, and mixtures of, UI widget libraries; supporting multiple,

and mixtures of, UI adornments; applying multiple, and mixtures of, UI layouts. We will justify

each of these characteristics in turn in the following sections. We will begin each section by first

framing the characteristic within the literature and within observations from our discovery research.

We will then move to justify each characteristic and discuss its technical details. Because of our

strong focus on a practical UI generator, we will discuss these technical details in the context of our

own implementation, which we have called Metawidget (http://metawidget.org). This

implementation is the outcome of our action research, and the proof of our work.

Before we begin, however, it is important to first frame how the five characteristics fit together.

There are a number of ways they could be designed into a UI generator, though we would caution

against any approach based on presenting practitioners with multiple options or 'flags' - such

approaches likely underestimate the sheer volume of variations and combinations the characteristics

need to accommodate. In our particular implementation we have implemented the five

characteristics as a pluggable pipeline (Vermeulen, Beged-Dov & Thompson 1995) as shown in

figure 1. Practitioners can plug in alternate implementations, or custom implementations, of each

characteristic. This allows our implementation to accommodate the volume of variability while

avoiding the performance overhead and maintenance cost of an exponential combination of 'flags'.

http://metawidget.org/

The leftmost 'lifeline' in the UML sequence diagram (the Metawidget) serves to coordinate the

others and is not considered part of the pipeline. The remaining five UML lifelines correspond to

the five key characteristics we have identified from our action research. The UI generation proceeds

in a well-defined fashion along each stage of the pipeline, from left to right. Each stage is

pluggable. As an implementation detail, each stage is also immutable. This helps with memory

consumption and performance when multiple Metawidgets are used in the same UI.

Each of the UML lifelines and their corresponding characteristic is discussed in turn in the sections

to follow. We begin with the first UML lifeline, the 'inspector'.

3.1. Pluggable Inspectors

Most UI generation solutions dictate that practitioners provide the generator with a centralised,

single source of truth (SSOT). The solutions do this by defining their own UI modelling language or

graphical builder tool, then require the practitioner to use their tool to define the UI. For example,

UsiXML (Vanderdonckt et al. 2004) consists of “a User Interface Description Language (UIDL)

Figure 1: Metawidget pipeline, showing the five characteristics

that is a declarative language capturing the essence of what a UI is or should be independently of

physical characteristics. UsiXML describes at a high level of abstraction the constituting elements

of the UI of an application: widgets, controls, containers”. GUMMY (Meskens 2008) is designed

“in a similar way to traditional GUI builders in order to allow designers to reuse their knowledge of

single-platform user interface design tools... there is a toolbox showing the available user interface

elements, a canvas to build the actual user interface and a properties panel to change the properties

of the user interface elements on the canvas”. Internally, “GUMMY builds a platform-independent

representation of the user interface and updates it as the designer makes changes. This allows for an

abstract specification of the user interface” which it then uses to drive UI generation for multiple

physical devices. However as Jelinek and Slavik (2004) observe, “a common disadvantage [of

modelling languages and graphical builder tools] is the fact that the user interface is defined

explicitly and separately” and therefore “the application and the corresponding [UI] model need to

be kept consistent”. Prat et. al (1990) agree, finding that in practical application design “the [back-

end] requires a considerable amount of knowledge [much of which is] similar to that required by the

[UI] modules”.

Some UI generation solutions acknowledge this shortcoming and seek to reuse existing information

already embedded in an application's architecture. Unfortunately they still require this to be rigidly

centralised. For example, Naked Objects dictates “all the functionality associated with a given

entity [must be] encapsulated in that entity, rather than being provided in the form of external

functional procedures that act upon the entities” (Pawson 2004). Most industry systems do not

adhere to such a 'behaviourally-complete' methodology. Rather, they use what Firesmith (1996)

calls “dumb entity objects controlled by a number of controller objects”. They do this in order to

benefit from a rich ecosystem of technologies. What Firesmith terms 'controller objects' industry

practitioners would term, but not be limited to, validation subsystems, workflow subsystems, rule

engines and Business Process Modelling (BPM) languages. Indeed, as Pawson himself later

concedes “most object-oriented (OO) designs, and especially object-oriented designs for business

systems, do not match this ideal of behavioural-completeness”. It is important to appreciate this is

not because most business systems are poorly designed. Rather, they are seeking to leverage

functionality provided by the large number of mature subsystems available in industry, in order to

increase productivity and reduce development cost. It is still possible to have an SSOT whilst being

decentralised amongst multiple subsystems, provided there is no overlap in the decentralisation (i.e.

the workflow subsystem is concerned with different aspects of the application to the validation

subsystem).

Our adoption studies underscored this point with industry practitioners. One commented “many

frameworks or tools enforce the designer's vision on how solutions should be architected. What I

liked about [your implementation] is that I could drop it in whatever architecture I was using”. The

phrase 'whatever architecture I am using' turned out to be critical, because real world architectures

were found to vary widely - dependent on both hard, business requirements and softer, aesthetic

judgements.

As an example of a business requirement, many architectures abstract their UI data into OO classes.

It is certainly possible to generate UIs based on instances of those classes - indeed, this is the

approach Naked Objects mandates. But business requirements often prevent this approach and it

was found that being able to plug in a company's own back-end inspector was fundamental to the

usefulness of a UI generator. One adoption study had defined the UI in their own, proprietary XML.

“[Being able to write our own] inspector that knows our XML schema and can find all restrictions

of the currently inspected field and add that to the attributes returned [was a key strength]”. Another

study had used rules in a database: “The main feature for us was the possibility to dynamically,

based on rules stored in our database, create input screens based on user selections... it was

important it supported our back-end. Being able to plug-in our back-end inspectors gave us the

flexibility needed, it is impossible to support everyone's requirements [out of the box]... otherwise

we probably would not have even tried it”. Another adoption study used a mixture of third-party

libraries: “we work with JDO, OVal, and some custom annotations, so being able to extend was a

must for us”. Another adoption study “we did not want to place view stuff into the model, and we

did not want to place it in an [external] XML file either, because we would have to replicate the

property name. [Instead] we built [an inspector] based on our properties files”. By 'properties files'

the team is referring to reading UI information from localization (internationalization) resource

bundles. These examples demonstrate there are a multiplicity of sources of UI metadata.

Furthermore, it is not difficult to posit other useful sources, such as Web Services Description

Language files (WSDL 2001).

A common example of an aesthetic judgement revolved around the mixing of presentation

information with business logic. Some adoption studies reported “there was some spirited debate [in

the development team], since [annotating the business objects can] degrade gracefully if not in use.

It still, to us, seemed cleaner to put UI-specific code outside of our business objects [in XML

files]”. Another said “business objects should be neutral regarding presentation - I am a supporter of

separated tiers”. But other adoption studies disagreed “while I appreciate the power within the XML

inspectors, I used annotations to configure [my business objects]”. Another “I don't mind

[annotating], an annotation is just metadata”. Interestingly, one study considered it a matter of scale:

“for small projects it might not be a concern, so we find [the fact that it is supported] valid, but for

larger projects where the architecture is more important, usually we want to keep a clear separation

between layers, and it is not desirable to 'pollute' the model”.

It is important to note practitioners are not simply talking about supporting many different back-end

technologies. Rather, they are talking about being able to mix technologies, including custom

subsystems and alternate implementations of the same subsystem. The latter is less an issue in 'full

stack' proprietary software environments such as the Microsoft application stack, but in Open

Source enterprise ecosystems such as Java EE there are often dozens of competing implementations

of the same subsystem (Shan et al. 2006). There are even competing implementations of the core

language (e.g. Java versus Groovy versus Scala). Software architecture therefore involves a myriad

of choices, many of which have no 'right' or 'wrong', and opinions on which evolve over time. For

example, business rule engines are becoming increasingly popular (Rouvellou et al. 1999). Any UI

generator that seeks to dictate, rather than adapt to, a system's architecture therefore has limited

practical value.

Our implementation addresses this characteristic of supporting mixtures of back-end technologies

by defining pluggable 'inspectors'. It defines a minimal 'Inspector' interface and ships with a number

of implementations of this interface to support extracting metadata from different, heterogeneous

subsystems. The parent Metawidget (leftmost lifeline in figure 1) requests information regarding a

particular business object and it is the responsibility of each individual inspector to gather as much

information as possible about that business object from its particular subsystem. A current limitation

and open question of this approach is how to validate the completeness of the inspection. The issue

of completeness is ongoing work.

Returning to our theme of an SSOT, our implementation also supplies a CompositeInspector, named

after the composite design pattern (Gamma et al. 1995), to support combining the inspection results

from multiple inspectors into a more detailed whole result, as shown in figure 2. This more detailed

whole result forms a temporary centralised SSOT from the subsystems it is split across, so that it

can be used to drive UI generation. This extraction and collation of metadata from multiple,

heterogeneous subsystems is commonly referred to as software mining2.

2 Software mining relates to the discovery of artefacts in code (Xie, Pei & Hassan 2007) for purposes such as

constructing domain ontologies (Grcar, Grobelnik & Mladenci 2007) or identifying call usage patterns (Kagdi, Collar &

Maletic 2007). This is distinct from the statistical collection of information to understand relationships (in for example,

customer relationship management) which is typically referred to as data mining (Cao et al. 2010; Li, Zhang & Wang

2006).

Figure 2: CompositeInspector implements Software Mining

It is often said in software development that each design decision should “pull its weight” (Bloch

2001). That is to say, it is a validation of good design if each decision provides multiple advantages

that demonstrably outweigh the inevitable disadvantage of its added complexity. Encouragingly,

several of our five characteristics demonstrate such emergent advantages. For inspectors, an

emergent advantage of CompositeInspector is that it becomes possible to run remote inspections.

Multiple groups of inspections can be run remotely on different application tiers, passing the

inspection results back to the UI in a well-defined, secure manner, where they can be recombined.

This is important in real world architectures where often the UI layer is prohibited from, say,

directly accessing the database schema.

To reiterate, throughout section 3 we are referencing our own particular implementation of each

characteristic in order to provide a deeper analysis. Clearly, however, ours is not the only approach.

For example, the Naked Objects team report (Haywood 2008.1) they are introducing pluggable

'facets' as a method of supporting mixtures of back-end technologies, including XML and database

sources. This somewhat relaxes their 'behaviourally-complete' methodology and suggests some

convergence (Haywood 2009).

This section has demonstrated that supporting a mixture of heterogeneous sources of UI metadata is

an important characteristic for a practical UI generator. Having retrieved and collated all available

metadata from the back-end subsystems, it is generally necessary to post process it. This

characteristic is discussed in the next section.

3.2. Pluggable Inspection Result Processors

The raw inspection result returned from the inspector invariably needs post processing before it is

suitable for consumption. For example, the fields generally need to be arranged in a business-

defined order. There are various ways to achieve this, dependent on the metadata source. For

example, if the data is sourced from an XML document its nodes are inherently ordered (XML

2008). But if the data comes from JavaBean properties in Java class files then it will not retain any

ordering information (Gosling 2005) so one must be imposed. In the latter case, our adoption

studies showed that the method used to impose ordering is open to practitioner taste. By default our

implementation uses a 'comes after' approach, whereby each business field can specify the field that

immediately precedes it. But some adoption studies reported "I would rather give the properties

priorities so that I can say 'this one comes first' instead of 'this one comes after that other one'. It's

just more natural to me". Equally, the Naked Objects team reports “by way of comparison (and as

an alternative idea), the Naked Objects programming model uses an annotation called

@MemberOrder, which takes an ordering in Dewey decimal notation. So, we have

@MemberOrder("1.1")” (Haywood 2008.2).

Such explicit field ordering at the business model-level has disadvantages, however, as one

practitioner noted "adding [field ordering information] to basically every field of your business

model strongly reduces clarity... one of the key principles of [pluggable inspectors] is the possibility

to directly use your unchanged domain objects [but this] doesn't really follow that principle”. It is

also less flexible in cases where “one wants to automatically create many different views based on a

single business object with components of different sequence and visibility”. The alternative,

ordering the fields at the UI-level, introduces duplication - re-stating the fields used in a business

object (Jelinek & Slavik 2004) - and compromises polymorphism - the UI needs to statically know

the fields in advance - but practitioners advocated both sides: “I agree, the default behaviour

[model-level ordering] should be as it is now... still, I see [UI-level ordering] as an advantageous

option for cases with specific concerns such as flexibility".

Field ordering, then, whether specified by the back-end or the front-end, must be pluggable.

Another example of an inspection result post processing operation, open to similar interpretations of

practitioner taste, is excluding fields: should the model-level dictate which fields are to be excluded

from the UI, or should this be decided on a per-screen basis? Most likely, a combination of both

would be required – some clearly inappropriate fields, such as database primary keys, should be

excluded from the UI at the model-level whereas other fields may need excluding on a per-screen,

or per-user-role basis. Such post processing requirements are commonplace and a UI generator that

does not accommodate different practitioners' preferred approaches would limit its appeal.

Our implementation addresses this characteristic of supporting multiple ways to post process the UI

data by defining pluggable 'inspection result processors'. It defines a minimal

'InspectionResultProcessor' interface and ships with a number of implementations of this interface

to support post processing metadata. Distinct from inspectors, which are designed to be detached

from the UI and executable on application tiers inaccessible to the UI, InspectionResultProcessors

maintain a reference to the current UI page. This is required for the aforementioned ability to

implement UI-level ordering and exclusion.

This section has demonstrated that supporting a variety of ways to post process UI metadata is an

important characteristic for a practical UI generator. Once post processing is complete, the

inspection result is ready to drive the UI generation, as discussed in the remaining three sections.

3.3. Pluggable Widget Builders

An SSOT acts as a valuable starting point for UI generation. We have discussed how, in industry,

this metadata is seldom centralised but rather must be brought together from disparate sources.

There does not appear to be any movement among industry systems to converge this situation. On

the contrary, the movement is generally towards additional types of subsystems, such as business

rule engines (Rouvellou et al. 1999). Similarly, and despite research community ideals to the

contrary, industry UI frameworks continue to diverge. Most notably, the Web browser does not

appear to be the ubiquitous UI for which many were hoping.

For example, when Apple debuted their iPhone in 2007, they originally advocated their Safari Web

browser as the recommended way to develop applications for the mobile device. A year later,

however, the pressure for native UIs was recognised and a traditional SDK was released. This

allowed better performance and access to device-specific hardware such as accelerometers and

third-party peripherals (Square 2010). The Google Android mobile platform similarly supports

native UI applications in addition to browser-based ones. Even if the browser were to become the

ubiquitous UI, the plethora of Web frameworks and approaches to Web development (Shan et al.

2006) suggest there will not be a convergence of UI platforms in the near future.

This need to support a variety of front-end frameworks was apparent in several adoption studies.

One reported: “We needed to integrate with a Spring MVC app, and in the future we may want to

integrate with some existing Swing applications... also possibly Java Server Faces (JSF)”. Another:

"if I'd had to [design my architecture] differently because of [your implementation] I would have

been unhappy. As things are I was just able to treat it as a normal Swing widget which was nice".

Another important requirement for a UI generator is that it support third-party, or custom, widgets.

This is important not only for flexibility but also robustness. For example, a frequent problem when

developing Web applications is ensuring compatibility across browsers. By leveraging existing

widget libraries, rather than attempting to generate HTML directly, a UI generator can delegate all

issues of browser incompatibility to the widget library – which has typically already been vetted in

a variety of production environments. An adoption study from an earlier action research cycle

criticised “if you have a more exotic GUI component used for certain properties, [your

implementation requires] more work needed to get that to render, as opposed to simply creating the

component in your GUI layer”. After we improved this, adoption studies from later action research

cycles reported: "We wrote our own widget builder.... [to use custom] components we developed

and Metawidget instantiates them”.

Implicit to this requirement to support third-party widget libraries is the ability to mix multiple

third-party widget libraries in the same UI, as shown in figure 3. Most third-party libraries only

specialise on a certain set of widgets, rather than trying to replace every widget the platform

provides.

Figure 3: Mixing multiple widget libraries in a UI

Our implementation addresses this characteristic of supporting mixtures of widget libraries by

defining pluggable 'widget builders'. It defines a minimal 'WidgetBuilder' interface and ships with a

number of implementations of this interface to support popular UI frameworks, such as the

aforementioned Spring MVC, Swing and Java Server Faces. Notably, our implementation also

supplies a CompositeWidgetBuilder, named after the composite design pattern (Gamma et al. 1995),

to support combining the widget libraries from multiple WidgetBuilders. The ordering of the

WidgetBuilders is significant, so that widget choice can prefer one third-party library's widgets over

another, or fall back to the default platform widgets, as shown in figure 4.

File upload widgets
from widget library #2

Standard widget

Date picker widget
from widget library #1

Figure 4: CompositeWidgetBuilder combines multiple widget libraries

As with inspectors, widget builders demonstrate emergent advantages. Specifically, they present a

compelling use case for practitioners to adopt UI generation. Once the developer has delegated their

widget creation to a widget builder, it becomes possible to plug in new widget libraries as they

become available – either new versions of existing libraries, or competing libraries offering more

desirable widgets. For example, a third-party widget library may be released that offers a 'colour

picker' widget with a user-friendly colour wheel. Imagine a practitioner has an application whose

existing approach is to present a text field constrained to only accept hexadecimal input in RGB

format (e.g. #ff00ff). The text field works, but the practitioner decides the colour wheel is more

usable (it doesn't require the user understand hexadecimal, for one). Using widget builders, the

practitioner would simply need to insert a WidgetBuilder for this new widget library as the first in a

CompositeWidgetBuilder's list of priorities. Every screen in the application that previously used the

hexadecimal text field would be immediately upgraded to use the colour picker, and this would

happen automatically across the entire application – a significant saving in practitioner time over

upgrading each screen manually. Notably, the WidgetBuilder itself could be provided by the widget

library author, their incentive being to increase ease-of-adoption of their library. This reasoning

extends to other areas of our pipeline too, such as inspectors, widget processors and layouts

(covered in subsequent sections): an author of a new product, such as a business rules engine, a

validation subsystem, or a layout manager, could increase its install base by providing UI generator

plugins for it – alleviating the need for a practitioner to learn much of their product's API and

significantly easing its adoption. Such plugins are not unprecedented, and grow the ecosystem of a

product segment by levelling the playing field for new entrants. For example, database vendors

typically provide plugins to popular ORMs so as to ease adoption amongst practitioners using those

ORMs.

This section has demonstrated that supporting mixtures of widget libraries is an important

characteristic for a practical UI generator. Widget builders simplify the process of choosing the

most appropriate widget for a business field. Simply choosing the widget is rarely sufficient,

however. There are generally a host of supporting technologies that also need to be attached, such as

data validators, data binding frameworks, and event handlers. This characteristic is discussed in the

next section.

3.4. Pluggable Widget Processors

In raw form, a widget is not likely to be suitable for inclusion in a UI. For example, end users

interacting with a raw text field are able to enter arbitrary text. However the business requirement

may be for, say, a credit card number. Widgets therefore need to be further adorned with data

validators, data binding frameworks and event handlers. Of particular note is that some of these

mechanisms, such as validators, may come from a different third-party library than the raw widget.

Processing such adornments is made difficult because of a general problem with automatic

generation of any kind, not just UI generation: generated code is opaque to the practitioner. It is

difficult to reference and attach mechanisms to objects that are not well-known in advance. One

early adoption study identified this as “when you want to customise [the generated widgets], like

replacing or adding more info to [them] you have to refer to them by property names. We have this

problem not only for [UI generation], but when you have a lot of dynamic stuff [such as ORM

frameworks]. It would be nice to either solve this or offer a solution for that”. Another gave a

concrete example, needing “a way to attach event handlers to widget value changes. This would

allow you to respond to change... not just do a bi-directional binding (for example you could enable

a save button that starts disabled)”. A third adoption study had custom mechanisms they wanted to

attach: “[we'd like to be] able to integrate our own validation and custom rendering of components”.

Practitioners require a pluggable mechanism that allows post processing of a built widget.

Critically, this mechanism must expose the same richness of metadata as the original widget

building did, so that widgets may be identified not just by their name but also by their type, their

constraints, their labels or any amount of other metadata.

Our implementation addresses this characteristic by defining pluggable 'widget processors'. It

defines a minimal 'WidgetProcessor' interface and ships with a number of implementations of this

interface to support popular adornments, such as the aforementioned data validators and data

bindings, as shown in figure 5. Many of these implementations are defined by third-party libraries,

not by the same base UI library as the raw widget. Notably the list of widget processors is

maintained not by an immutable CompositeWidgetProcessor, as with CompositeWidgetBuilder, but

by a mutable list. This is important so that individual UI screens can dynamically add widget

processors that, say, attach event handlers. The methods these event handlers call are, by definition,

tied to a particular UI screen rather than being immutable across the entire application. If we were

to implement an immutable CompositeWidgetProcessor we would be unable to add such event

handler processors without invalidating the immutability of the overall composite. Equally however

many other types of widget processor, such as data validators and data bindings, are not tied to a

particular screen and are immutable. We do not want to unnecessarily instantiate multiple instances

of such processors. Designing the widget processors as a mutable list, therefore, allows us the best

of both approaches.

Figure 5: WidgetProcessors allow post processing of a widget

This section has demonstrated that supporting a variety of ways to post process UI widgets is an

important characteristic for a practical UI generator. Following post processing, the widget is robust

enough to be placed in front of the user. However, it still remains to lay it out appropriately among

its siblings. This final characteristic is discussed in the next section.

3.5. Pluggable Layouts

Having inspected, built and processed the final widget its layout on the screen is perhaps the most

intractable issue in UI generation. In particular, it significantly detracts from the practicality of

automated generation if it in any way compromises the final product in usability, or even in

aesthetics (Myers, Hudson & Pausch 2000, p. 13). This realisation exposes a myriad of small details

around UI appearance, navigation, menu placement and so on. The problem is so difficult, in fact,

we believe it insoluble.

Our implementation sidesteps the issue by sharply restricting the bounds of its generation (Kennard

& Steele 2008). Specifically, it does not attempt to generate the entire UI. Rather, it focuses on

generating only a small piece of it – the 'inside' of each page, the area around the fields themselves.

Ultimately, this is the only piece that is actually constrained by the back-end architecture. The UI

appearance, navigation, menu placement and overall usability are far more device-specific, not to

mention specific to the aesthetic taste of the UI designer. We explicitly keep these out of scope. Our

adoption studies confirmed: "I think that although it is theoretically possible to solve this

[automatically], in practice, it is generally not feasible to re-write the view into different

technologies [automatically]. Even in scenarios where you have to design, for instance, the same

screen with different versions for desktop and mobile, the screen cannot fit/support the same

functionality". Human-based, aesthetic judgements must be made as to what can fit, what can be

supported, and what is most usable.

As testament to how impractical generation of an entire UI is, even after restricting UI generation to

just the area around fields we find there is still a formidable degree of variability. Fields may

typically be arranged in a 'column', with the widget on the right and its label on the left. But other

times the practitioner may want two or three such columns side by side. If so, they may need some

widgets – such as large text areas – to span multiple columns. Or they may abandon columns

altogether and want the fields arranged in a single, horizontal row. Furthermore, it is not difficult to

posit other real world arrangements, such as right-to-left arrangements for the Arabic world. It is

important to accommodate this variety if the generator is to achieve the exact look the practitioner

desires. If it cannot achieve that exact look, the practitioner is compromising usability – the most

determining factor of a UI – for the sake of automatic generation (Myers, Hudson & Pausch 2000,

p. 13).

Our implementation addresses this characteristic of supporting multiple ways to arrange widgets by

defining pluggable 'layouts'. It defines a minimal 'Layout' interface and ships with a number of

implementations of this interface to support different layouts. Notably, our implementation also

supplies a LayoutDecorator, named after the decorator design pattern (Gamma et al. 1995), to

support decorating one layout with another. For example, fields may need to be divided into

sections separated by headings, or sections divided into tabs in a tab panel. Such concerns should be

orthogonal to the field arrangement themselves (i.e. one column or two columns, labels to the left of

the widgets or the right) to curb a combinatorial explosion of UI options, as shown in figures 6 and

7.

Figure 6: Layout decorated with tabs inside

section headings

Figure 7: Layout decorated with section headings

inside tabs

Adoption studies informed and agree the benefits of achieving parity between the UI designer's

intent and the automatically generated UI are invaluable: “It is really hard to keep consistency,

visual or functional standards when building [a] GUI in a large team. However, when it is generated

dynamically, the rules are centred and even the customisation is somehow controlled”.

As with inspectors and widget builders, layouts further demonstrate emergent advantages.

Specifically, it becomes possible to mix layouts from third party widget libraries. Third party

libraries often supply 'layout widgets' in addition to their data entry widgets. For example they may

provide collapsible panels. If the practitioner is accustomed to using these layout widgets, the UI

generator must support them or it will not be able to achieve parity with the original UI design. In

addition, leveraging layout widgets affords the inherent robustness of delegating Web browser

incompatibility issues, as discussed in section 3.3.

This section has demonstrated that supporting multiple ways to arrange widgets is an important

characteristic for a practical UI generator. This, combined with the other four characteristics

demonstrated in previous sections, results in a richly flexible UI generator. As shown, many of these

five characteristics individually exhibit emergent advantages. However, when all five are combined

there is a further emergent advantage – one that appears unique in the literature. We turn to this

advantage in the next section.

4. Retrofitting

The previous section demonstrated five characteristics that are necessary for a practical UI

generator. In addition, it showed how these characteristics give rise to a number of emergent

advantages, which in themselves are an encouraging validation of their value. However there is a

further notable advantage that emerges when all five characteristics are present in a UI generator -

an advantage that is seldom even discussed, much less targeted, in the literature. Specifically, these

five characteristics combined make it possible to retrofit UI generation into existing applications.

Retrofitting is a laudable but largely unpursued goal. It is laudable because the number of existing

applications, both mature and currently under development, far outweighs the number of 'green

field' applications that could reasonably be expected to adopt a new UI generator. The ability to

remove boilerplate code from existing applications, in addition to preventing boilerplate code in

new ones, has potential savings of many orders of magnitude. Retrofitting is largely unpursued

presumably because it requires a level of UI generator flexibility, particularly flexibility towards

back-end architectures, that is difficult to target. However several adoption studies successfully

applied our implementation to existing applications. This included them being able to partially

migrate applications one screen, or even one piece of a screen, at a time. This prompted us to

conduct internal experiments retrofitting our implementation to other projects. For example, we

chose three applications from the samples included with the Open Source JBoss Seam distribution

(JBoss Seam 2010). We discovered the retrofitting activity encompassed three main areas.

First was to explore what existing metadata could be leveraged from the application's back-end

architecture. For example the Seam Hotel Booking sample contained some UI metadata embedded

within its persistence subsystem, some within its validation subsystem, and some within a scripting

language. Conversely, the Seam DVD Store sample contained UI metadata embedded within its

BPM subsystem. We were able to plug in inspectors for each of these. The second activity was to

introduce UI metadata that did not exist in the application but was required for generation. For

example business field ordering information had to be incorporated. The final activity was to

replicate the application's original UI appearance. We were able to plug in widget builders for this.

In particular, we were able to plug in a mixture of widget builders to replicate the application's

original choice of two third-party widget libraries.

Overall there was a significant amount of existing code that could be removed, though notably some

new code also had to be introduced - such as field ordering information and configuration files.

Nevertheless, when comparing aggregate sizes of the files in the sample projects before and after

retrofitting, we realised between a 30% to 40% reduction in UI code through the introduction of our

implementation. For some individual files this metric was as high as 70%, as shown in figure 8. On

the left is the original XHTML source code for a single UI screen, and on the right the retrofitted

version (the source code is not meant to be legible in the figure, it suffices just to be able to discern

its structure). The red boxes and lines convey which portions of the original source were able to be

replaced, and their equivalent size in the retrofitted version.

This section has introduced retrofitting as an emergent advantage of the five characteristics

demonstrated in the previous section. The ability to retrofit existing applications is an encouraging

indicator of the overall value of the five characteristics. We now turn to this 'overall value' for our

final section.

Figure 8: Portions of code saved by retrofitting

5. Summary, Conclusions and Future Work

This article has emphasised the need for UI generation within mainstream software development,

and underscored impracticalities with existing approaches. It has employed practice based research

and human centred design approaches to identify five characteristics that are necessary for a

practical UI generator. Interviews, adoption studies and industry collaboration suggest these

characteristics are key to the real world adoption of a generator. These characteristics can be

summarised as: inspecting existing, heterogeneous back-end architectures; appreciating different

practices in applying inspection results; recognising multiple, and mixtures of, UI widget libraries;

supporting multiple, and mixtures of, UI adornments; applying multiple, and mixtures of, UI

layouts. Many of these characteristics seem ignored by current UI generators and we believe this is

hindering their widespread adoption. This article has further identified the impact of implementing

all five characteristics: they allow practitioners to retrofit UI generation into existing applications.

This significantly broadens the range of applications amenable to UI generation and increases its

value to practitioners.

This article has drawn several far reaching conclusions. First, that any UI generator that seeks to

dictate, rather than adapt to, a system's architecture has limited practical value. Second, it is

important to appreciate that the need for diversity in industry architectures is not because most

business systems are poorly designed. Rather, it is because business systems seek to leverage

functionality provided by a large number of mature subsystems available in industry, in order to

increase productivity and reduce development cost. Finally this article has emphasised that action

research, as a methodology for research and development, is fundamental to the usefulness of a

resulting product in supporting diversity and richness of practice.

Immediate future work will concentrate on further developing our UI generator implementation.

There are many design decisions for which the five characteristics identified in this article could be

implemented either way. For example, there are opposing schools of thought whether generation

should be runtime based or statically generated. We also plan to continue evaluating our

implementation against real world business systems, to assess the degree to which those systems

can be retrofitted to reduce UI code. A longer term goal is to standardise the five UI generation

characteristics, such that they can be adopted as part of mainstream UI development.

References

Bloch, J., 2001. Effective Java programming language guide, Sun Microsystems, Inc. Mountain

View, CA, USA.

Cao, L., Yu, P.S., Zhang, C. & Zhao, Y., 2010. Domain Driven Data Mining, Springer-Verlag New

York Inc.

Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, R. & Casati, F., 2007. 'Understanding UI

Integration: A Survey of Problems, Technologies, and Opportunities', IEEE INTERNET

COMPUTING, pp. 59-66.

Dick, B., 2000. 'A beginner's guide to action research',

http://www.scu.edu.au/schools/gcm/ar/arp/guide.html

Dick, B., 2005. 'Grounded theory: a thumbnail sketch',

http://www.scu.edu.au/schools/gcm/ar/arp/grounded.html

Firesmith, D.G., 1996. Use Cases: The Pros and Cons. Wisdom of the Gurus: A Vision for Object

Technology

Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1995. Design patterns: elements of reusable

object-oriented software, Addison-wesley Reading, MA.

Gosling, J., 2005. The Java Language Specification, Addison-Wesley.

Grcar, M., Grobelnik, M. & Mladeni, D., 2007. 'Using text mining and link analysis for software'.

Haywood D., 2008.1. Comments section under

http://kennardconsulting.blogspot.com/2008/04/useful-bounds-of-automatic-ui.html

Haywood D., 2008.2. Comments section under

http://kennardconsulting.blogspot.com/2008/07/metawidget-javassist-versus.html

Haywood D., 2009. Comments section under http://www.theserverside.com/news/thread.tss?

thread_id=58283#328193

JBoss Seam, 2010. http://www.seamframework.org

Jelinek, J. & Slavik, P., 2004. 'GUI generation from annotated source code', Proceedings of the 3rd

annual conference on Task models and diagrams, pp. 129-136.

Jha, N.K., 2005. 'Low-power system scheduling, synthesis and displays', Computers and Digital

Techniques, IEE Proceedings-, vol. 152, no. 3, pp. 344-352.

JPA 2008. http://jcp.org/en/jsr/detail?id=220.

Kagdi, H., Collard, M.L. & Maletic, J.I., 2007. 'Comparing Approaches to Mining Source Code for

Call-Usage Patterns', Proceedings of the Fourth International Workshop on Mining Software

Repositories.

Kemmis, S. & McTaggart, R., 1988. 'The action research planner'. Deakin University.

Kennard, R., Edmonds, E. & Leaney, J., 2009. Separation Anxiety: stresses of developing a modern

day Separable User Interface. 2nd International Conference on Human System Interaction.

Kennard, R. & Steele, R. 2008, 'Application of Software Mining to Automatic User Interface

Generation', New Trends in Software Methodologies, Tools and Techniques, p. 244.

Larman, C. & Basili, V. R., 2003. 'Iterative and Incremental Development: A Brief History',

Computer, pp. 47-56.

Li, X., Zhang, S. & Wang, S. 2006, 'IJDWM Special Issue: Advances in Data Mining Applications',

International Journal of Data Warehousing and Mining, vol. 2, no. 3.

Manheimer, J.M., Burnett, R.C. & Wallers, J.A., 1989. A case study of user interface management

system development and application. Proceedings of the SIGCHI conference on Human

factors in computing systems: Wings for the mind , 127-132.

Meskens, J., Vermeulen, J., Luyten, K. & Coninx, K., 2008. 'Gummy for multi-platform user

interface designs: shape me, multiply me, fix me, use me', ACM, pp. 233-240.

Myers, B.A., 1995. 'User Interface Software Tools', ACM Transactions on Computer-Human

Interaction, vol. 2, no. 1, pp. 64-103.

Myers, B., Hudson, S.E. & Pausch, R., 2000. 'Past, present, and future of user interface software

tools', ACM Transactions on Computer-Human Interaction (TOCHI), vol. 7, no. 1, pp. 3-28.

Myers, B.A. & Rosson, M.B., 1992. Survey on user interface programming, ACM Press New York,

NY, USA.

Pawson, R., 2004. 'Naked Objects', Trinity College, Dublin.

Prat, A., Lores, J., Fletcher, P. & Catot, J.M., 1990. Back-End Manager: An Interface between a

Knowledge-based Front End and its Application Subsystems. Knowledge-Based Systems, vol.

3, no. 4.

Rouvellou, I., Degenaro, L., Rasmus, K., Ehnebuske, D. and Mc Kee, B., 1999. Externalizing

Business Rules from Enterprise Applications: An Experience Report. Practitioner Reports in

OOPSLA, vol. 99.

Schön, D.A., 1983. The Reflective Practitioner: How Professionals Think in Action, Basic Books.

Shan, T.C., Hua, W.W., Bank, W. & Wilmington, N.C., 2006. 'Taxonomy of java web application

frameworks', pp. 378-385.

Square 2010. http://www.squareup.com

Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D. & Florins, M., 2004.

UsiXML: a User Interface Description Language for Specifying Multimodal User Interfaces,

W3C Workshop on Multimodal Interaction, 19-20.

Vermeulen, A., Beged-Dov, G. & Thompson, P. 1995, 'The pipeline design pattern', OOPSLA ’95

Workshop on Design

WSDL 2001. http://www.w3.org/TR/wsdl

Weiser, M., 1993. 'Hot topics-ubiquitous computing', Computer, vol. 26, no. 10, pp. 71-72.

Xie, T., Pei, J. & Hassan, A.E., 2007. 'Mining Software Engineering Data', International Conference

on Software Engineering, pp. 172-173.

XML 2008. http://www.w3.org/TR/REC-xml

Xudong, L. & Jiancheng, W., 2007. 'User Interface Design Model', Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing, 2007. SNPD 2007. Eighth

ACIS International Conference on, vol. 3.

Biography

Richard Kennard is a PhD student in the Faculty of Engineering and Information Technology at the

University of Technology, Sydney. He is an independent industry consultant with fifteen years

experience and an active member of the Open Source community.

John Leaney is an Adjunct Professor in the Faculty of Engineering and Information Technology at

the University of Technology, Sydney.

