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Abstract

Many software projects spend a significant proportion of their time developing the User Interface 

(UI), therefore any degree of automation in this area has clear benefits. Such automation is difficult 

due principally to the diversity of architectures, platforms and development environments. Attempts 

to  automate UI generation to date have contained restrictions which did not  accommodate this 

diversity,  leading to a lack of wide industry adoption or standardisation.  The authors set out to 

understand  and  address  these  restrictions.  We  studied  the  issues  of  UI  generation  (especially 

duplication) in practice, using action research cycles guided by interviews, adoption studies and 

close collaboration with industry practitioners. In addressing the issues raised in our investigation, 

we identified five key characteristics any UI generation technique would need before it  should 

expect  wide  adoption  or  standardisation.  These  can  be  summarised  as:  inspecting  existing, 

heterogeneous  back-end  architectures;  appreciating  different  practices  in  applying  inspection 

results;  recognising  multiple,  and  mixtures  of,  UI  widget  libraries;  supporting  multiple,  and 

mixtures  of,  UI  adornments;  applying  multiple,  and  mixtures  of,  UI  layouts.  Many  of  these 

characteristics seem ignored by current approaches. In addition, we discovered an emergent feature 

of  these  characteristics  that  opens  the  possibility  of  a  previously  unattempted  goal  -  namely,  

retrofitting UI generation to an existing application.
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1. Introduction

Many software projects spend a significant proportion of their time developing the User Interface 

(UI). Research in the early 1990s found that some 48% of application code and 50% of application 

time was devoted to implementing UIs (Myers 1992). These figures are still considered relevant 

today, more so with the increased demands of richly graphical and web-based UIs (Jha 2005; Daniel 

et al. 2007), therefore any degree of automation in this area has clear benefits. This automation is 

difficult because UIs bring together many qualities of a system that are not formally specified in any 

one place, or are not specified in a machine-readable form. For example, a dropdown widget on a 

UI screen may have a data type specified in a database schema, a range of choices drawn from 

within  application  code,  and a  look and  feel  specified  by a  human-readable  design  document. 

Bringing these diverse characteristics together to enable automatic UI generation is a significant 

challenge and research in this field dates back over two decades.  The work was given increased 

urgency  with  the  emergence  of  ubiquitous  computing  (Weiser  1993)  and  its  proliferation  of 

different UI devices with widely varying capabilities.  Approaches to date can be broadly grouped 

into  three  categories:  interactive  graphical  specification  tools,  model-based generation  tools,  or 

language-based  tools  (Myers  1995).  Each  has  significant  disadvantages  which  have  limited  its 

success in industry (Myers, Hudson & Pausch 2000).

The main disadvantage of the first two approaches – interactive graphical specification tools and 

model-based  generation  tools  –  is  that  they  inherently  require  software  developers  to  restate 

information that is already encoded elsewhere in the application. This duplication is both laborious 

and a source of errors, as the developer must take care that the application code and the UI model 

stay  synchronised  (Jelinek  &  Slavik  2004).  The  main  disadvantage  of  the  third  approach  – 

language-based  tools  –  is  that  generally  programming languages  'are  not  sufficient  enough for 

complex UI modelling. To completely and formally depict the UI composition and behaviour, new 

attributes and properties are needed to describe the object data members'  (Xudong & Jiancheng 

2007, p.  540).  Without these new attributes and properties,  language-based tools must resort  to 

generalised  heuristics  when  generating  their  UIs.  These  generalisations  invariably  mean  'the 

generated  User  Interfaces  [are]  not  as  good  as  those  created  with  conventional  programming 

techniques' (Myers, Hudson & Pausch 2000, p. 13).

UI generation has not experienced the same wide industry adoption and standardisation as, say, 

Object Relational Mapping (ORM) (JPA 2008). We claim that this is because existing approaches 

are  impractical, not because the issue itself lacks urgency. A series of interviews conducted with 

practitioners across industry segments and software platforms (Kennard, Edmonds & Leaney 2009) 

found common experiences of duplication (Jelinek & Slavik 2004), common experiences of bugs 



caused by it, and a common desire for it to be addressed. One interviewee confirmed "the problem 

definitely exists. It's more from the business layer forward to the screen is the biggest problem 

because  there  are  things  out  there  like  [ORM] which  do  from,  sort  of,  business  layer  down". 

Another lamented that, when making a typical change to an enterprise system "the drudgery at the 

moment is adding the UI code, and adding the validation and giving that feedback. That's really 

quite unpleasant. It's the most complex of all the steps, actually, depending on the magnitude of the 

change". Some practitioners gave concrete examples "we've got a BigDecimal (Gosling 2005), and 

[the back-end has] set the scale to 8 but the GUI puts through 10, it [gets silently rounded and] 

passes all the way through. That becomes a real issue because it's really hard to find. That's caused 

us huge problems before". One developer reflected "it's a fairly established software engineering 

principle that the more you have to repeat something [defining fields in both the business layer and 

the UI layer] the higher the chances there's going to be an error in the code". Finally one engineer 

summarised "every developer who writes anything more than a Hello World application will have 

this problem. Most developers encounter this problem on a daily basis as a constant friction in their 

daily  work".  During  publication  of  our  2009  paper,  reviewers  reframed  our  interviews  in  an 

academic context  “the work is  exceptionally well  motivated...  it  is important  for the [research] 

community to hear... nobody in a senior position in a software company today is going to not be 

aware of this problem and the various hacks, workarounds, and band-aids used to cover up the pain 

that it causes (at least not in a successful software company). Again, academics may be surprised by 

some of the comments and the gravity of the concerns, but I wasn't; this is a serious problem and 

there are partial solutions out there that various people employ with varying degrees of success”.

Having established the urgency of the problem, the authors set out to address the  impracticalities 

with existing UI generation approaches. We sought a well-motivated, well-justified approach guided 

by practice  based  research  and  human  centred  design  approaches.  These  included  open ended 

interviews,  adoption studies  and close collaboration with industry practitioners,  as  described in 

section 2. In doing so we identified five key characteristics we believe are necessary for any UI 

generation technique to achieve wide adoption or standardisation.  Many of these characteristics 

seem ignored by current approaches. The full adoption studies will be published at a later date, but 

we discuss each characteristic in detail in section 3. In addition, we discovered an emergent feature 

of these characteristics is that they open the possibility of retrofitting - a previously unattempted 

goal - which we explore in section 4. Finally, we discuss future work in section 5.

2. Methodology

Given our strong focus on industry practice, and ensuring any UI generation is practical, it was 



important to engage our target audience early and often. One industry-based approach effective in 

doing this is iterative development. There are various definitions of iterative development, but all 

are common in trying to avoid a single-pass, document-driven, gated-step approach (Larman & 

Basil  2003).  The  iterative  development  methodology  has  interesting  parallels  to  the  research 

methodology of action research (Dick 2000). Indeed, action research's definition of a cycle of 'plan, 

act, observe, reflect, then plan again' (Kemmis & McTaggart 1988) would be a fitting description 

for iterative development. The outcomes from each cycle drive the planning for the next cycle, both 

in terms of expanding those areas that worked well and revisiting those that were less successful. 

This is particularly effective when either the problem or the solution are not well defined, as they 

afford the work the agility to change as its goals become clearer.

Our research methodology employed action research as a framework within which to formalise 

iterative development, allowing the work to be both accessible to, and guided by, observations from 

both industry and the research community. Observations were gathered through forum messages, 

open-ended  interviews  using  simplified  grounded  theory  (Dick  2005)  and  adoption studies1. 

Adoption studies were gathered retroactively from companies who had independently discovered 

and decided to apply our work,  of their  own volition,  based on publicity from previous  action 

research cycles. Companies were discovered through message forums then contacted to solicit a 

study  of  their  experiences.  We  conducted  seven  such  studies  in  all,  ranging  from  private 

biotechnology  and  telecommunications  companies,  to  government  departments  and  academic 

institutions.

The last phase of each action research cycle reflected upon the observations from interviews  and 

adoption studies as drivers for the next cycle. Action research delineates an explicit 'reflect' phase 

(Kemmis & McTaggart 1988) so as to bring academic rigour to the proceedings. During the 'plan',  

'act'  and  'observe'  phases,  reflection  happens  'in  action'  (Schön  1983)  with  the  'action  present' 

measured in minutes or hours. During the 'reflect' phase, however, the 'action present' is much more 

deliberate,  being measured in  days  or  weeks,  which lends  more diligence and formality to  the 

Validity, Verification and Testing (VVT) of the research. It facilities the reconsideration of all design 

decisions, implementation details and observations from the preceding action research cycle in a 

holistic light, leading to key new insights.

This practice based methodology, conducted across three action research cycles over a period of 

1 Adoption studies are interviews focussed on adoption of a technology within an interviewee's organisation. The goal 

is  to draw out all  experiences and to  understand usage  and the environment in which the adoption occurred.  The 

interviewee is asked to discuss, and demonstrate, aspects of their adoption experience. The guiding questions include:  

what led them to adopt the technology; have they used or built similar technologies in the past; what were some of the 

most important features to them; where did they find the technology lacking.



three years, afforded us a breakthrough in our understanding of the problem domain.  Our most 

significant finding is the identification of five key characteristics any UI generation technique needs 

before it can be practical in an industry setting. Notably, many of these characteristics seem ignored 

by current UI generators, which we believe is hindering their widespread adoption. The next section 

presents our action research results in detail.

3. Characteristics of a Practical UI Generator

This section explains the five characteristics we believe, based on our action research cycles, are 

key to a practical UI generator. We have derived these characteristics through interviews, adoption 

studies and close collaboration with industry practitioners. They can be summarised as: inspecting 

existing,  heterogeneous  back-end  architectures;  appreciating  different  practices  in  applying 

inspection results; recognising multiple, and mixtures of, UI widget libraries; supporting multiple, 

and mixtures of, UI adornments; applying multiple, and mixtures of, UI layouts. We will justify 

each of these characteristics in turn in the following sections. We will begin each section by first 

framing the characteristic within the literature and within observations from our discovery research. 

We will then move to justify each characteristic and discuss its technical details. Because of our 

strong focus on a practical UI generator, we will discuss these technical details in the context of our 

own  implementation,  which  we  have  called  Metawidget  (http://metawidget.org).  This 

implementation is the outcome of our action research, and the proof of our work. 

Before we begin, however, it is important to first frame how the five characteristics fit together.  

There are a number of ways they could be designed into a UI generator, though we would caution 

against  any approach  based  on  presenting  practitioners  with  multiple  options  or  'flags'  -  such 

approaches likely underestimate the sheer volume of variations and combinations the characteristics 

need  to  accommodate.  In  our  particular  implementation  we  have  implemented  the  five 

characteristics as a pluggable pipeline (Vermeulen, Beged-Dov & Thompson 1995) as shown in 

figure 1. Practitioners can plug in alternate implementations, or custom implementations, of each 

characteristic.  This allows our  implementation to  accommodate the volume of  variability while 

avoiding the performance overhead and maintenance  cost of an exponential combination of 'flags'.

http://metawidget.org/


The leftmost 'lifeline'  in the UML sequence diagram (the Metawidget)  serves to coordinate the 

others and is not considered part of the pipeline. The remaining five UML lifelines correspond to 

the five key characteristics we have identified from our action research. The UI generation proceeds 

in  a  well-defined  fashion  along  each  stage  of  the  pipeline,  from  left  to  right.  Each  stage  is  

pluggable.  As an implementation detail,  each stage is  also immutable.  This helps with memory 

consumption and performance when multiple Metawidgets are used in the same UI.

Each of the UML lifelines and their corresponding characteristic is discussed in turn in the sections 

to follow. We begin with the first UML lifeline, the 'inspector'.

3.1. Pluggable Inspectors

Most UI generation solutions dictate that practitioners provide the generator with a  centralised, 

single source of truth (SSOT). The solutions do this by defining their own UI modelling language or 

graphical builder tool, then require the practitioner to use their tool to define the UI. For example, 

UsiXML (Vanderdonckt et al. 2004) consists of “a User Interface Description Language (UIDL) 

Figure 1: Metawidget pipeline, showing the five characteristics



that is a declarative language capturing the essence of what a UI is or should be independently of 

physical characteristics. UsiXML describes at a high level of abstraction the constituting elements 

of the UI of an application: widgets, controls, containers”. GUMMY (Meskens 2008) is designed 

“in a similar way to traditional GUI builders in order to allow designers to reuse their knowledge of 

single-platform user interface design tools... there is a toolbox showing the available user interface 

elements, a canvas to build the actual user interface and a properties panel to change the properties 

of the user interface elements on the canvas”. Internally, “GUMMY builds a platform-independent 

representation of the user interface and updates it as the designer makes changes. This allows for an 

abstract specification of the user interface” which it then uses to drive UI generation for multiple 

physical  devices.  However  as  Jelinek and Slavik (2004) observe,  “a common disadvantage  [of 

modelling  languages  and  graphical  builder  tools]  is  the  fact  that  the  user  interface  is  defined 

explicitly and separately” and therefore “the application and the corresponding [UI] model need to 

be kept consistent”. Prat et. al (1990) agree, finding that in practical application design “the [back-

end] requires a considerable amount of knowledge [much of which is] similar to that required by the 

[UI] modules”.

Some UI generation solutions acknowledge this shortcoming and seek to reuse existing information 

already embedded in an application's architecture. Unfortunately they still require this to be rigidly 

centralised.  For  example,  Naked Objects  dictates  “all  the  functionality  associated  with  a  given 

entity [must be] encapsulated in that entity,  rather  than being provided in  the form of external 

functional  procedures that act  upon the entities” (Pawson 2004).  Most  industry systems do not 

adhere to such a 'behaviourally-complete'  methodology.  Rather,  they use what Firesmith (1996) 

calls “dumb entity objects controlled by a number of controller objects”. They do this in order to 

benefit from a rich ecosystem of technologies. What Firesmith terms 'controller objects' industry 

practitioners would term, but not be limited to, validation subsystems, workflow subsystems, rule 

engines  and  Business  Process  Modelling  (BPM)  languages.  Indeed,  as  Pawson  himself  later 

concedes “most object-oriented (OO) designs, and especially object-oriented designs for business 

systems, do not match this ideal of behavioural-completeness”. It is important to appreciate this is 

not  because  most  business  systems  are  poorly  designed.  Rather,  they  are  seeking  to  leverage 

functionality provided by the large number of mature subsystems available in industry, in order to 

increase productivity and reduce development cost. It is still possible to have an SSOT whilst being 

decentralised amongst multiple subsystems, provided there is no overlap in the decentralisation (i.e. 

the workflow subsystem is  concerned with different aspects of the application to the validation 

subsystem).

Our  adoption studies underscored this point with industry practitioners. One commented “many 



frameworks or tools enforce the designer's vision on how solutions should be architected. What I 

liked about [your implementation] is that I could drop it in whatever architecture I was using”. The 

phrase 'whatever architecture I am using' turned out to be critical, because real world architectures 

were found to vary widely - dependent on both hard, business requirements and softer, aesthetic 

judgements.

As an example of a business requirement, many architectures abstract their UI data into OO classes. 

It  is certainly possible to generate UIs based on instances of those classes - indeed, this  is  the 

approach Naked Objects mandates. But business requirements often prevent this approach and it 

was found that being able to plug in a company's own back-end inspector was fundamental to the 

usefulness of a UI generator. One adoption study had defined the UI in their own, proprietary XML. 

“[Being able to write our own] inspector that knows our XML schema and can find all restrictions 

of the currently inspected field and add that to the attributes returned [was a key strength]”. Another 

study had used rules in a database: “The main feature for us was the possibility to dynamically, 

based  on  rules  stored  in  our  database,  create  input  screens  based  on  user  selections...  it  was 

important it supported our back-end.  Being able to plug-in our back-end inspectors gave us the 

flexibility needed, it is impossible to support everyone's requirements [out of the box]... otherwise 

we probably would not have even tried it”. Another  adoption study used a mixture of third-party 

libraries: “we work with JDO, OVal, and some custom annotations, so being able to extend was a 

must for us”. Another adoption study “we did not want to place view stuff into the model, and we 

did not want to place it in an [external] XML file either, because we would have to replicate the 

property name. [Instead] we built [an inspector] based on our properties files”. By 'properties files' 

the team is  referring to reading UI information from localization (internationalization) resource 

bundles.  These  examples  demonstrate  there  are  a  multiplicity  of  sources  of  UI  metadata. 

Furthermore,  it  is  not  difficult  to posit  other  useful  sources,  such as Web Services  Description 

Language files (WSDL 2001).

A common  example  of  an  aesthetic  judgement  revolved  around  the  mixing  of  presentation 

information with business logic. Some adoption studies reported “there was some spirited debate [in 

the development team], since [annotating the business objects can] degrade gracefully if not in use. 

It  still,  to us,  seemed cleaner  to put UI-specific code outside of our business objects  [in XML 

files]”. Another said “business objects should be neutral regarding presentation - I am a supporter of 

separated tiers”. But other adoption studies disagreed “while I appreciate the power within the XML 

inspectors,  I  used  annotations  to  configure  [my  business  objects]”.  Another  “I  don't  mind 

[annotating], an annotation is just metadata”. Interestingly, one study considered it a matter of scale: 

“for small projects it might not be a concern, so we find [the fact that it is supported] valid, but for 



larger projects where the architecture is more important, usually we want to keep a clear separation 

between layers, and it is not desirable to 'pollute' the model”.

It is important to note practitioners are not simply talking about supporting many different back-end 

technologies.  Rather,  they  are  talking  about being  able  to  mix technologies,  including  custom 

subsystems and alternate implementations of the same subsystem. The latter is less an issue in 'full  

stack'  proprietary  software  environments  such  as  the  Microsoft  application  stack,  but  in  Open 

Source enterprise ecosystems such as Java EE there are often dozens of competing implementations 

of the same subsystem (Shan et al. 2006). There are even competing implementations of the core 

language (e.g. Java versus Groovy versus Scala). Software architecture therefore involves a myriad 

of choices, many of which have no 'right' or 'wrong', and opinions on which evolve over time. For 

example, business rule engines are becoming increasingly popular (Rouvellou et al. 1999). Any UI 

generator that seeks to dictate, rather than adapt to, a system's architecture therefore has limited 

practical value.

Our implementation addresses this characteristic of supporting mixtures of back-end technologies 

by defining pluggable 'inspectors'. It defines a minimal 'Inspector' interface and ships with a number 

of implementations of this interface to support extracting metadata from different, heterogeneous 

subsystems. The parent Metawidget (leftmost lifeline in figure 1) requests information regarding a 

particular business object and it is the responsibility of each individual inspector to gather as much 

information as possible about that business object from its particular subsystem. A current limitation 

and open question of this approach is how to validate the completeness of the inspection. The issue 

of completeness is ongoing work. 

Returning to our theme of an SSOT, our implementation also supplies a CompositeInspector, named 

after the composite design pattern (Gamma et al. 1995), to support combining the inspection results 

from multiple inspectors into a more detailed whole result, as shown in figure 2. This more detailed 

whole result forms a temporary centralised SSOT from the subsystems it is split across, so that it 

can  be  used  to  drive  UI  generation.  This  extraction  and  collation  of  metadata  from multiple, 

heterogeneous subsystems is commonly referred to as software mining2.

2 Software  mining  relates  to  the  discovery of  artefacts  in  code  (Xie,  Pei  & Hassan  2007)  for  purposes  such  as 

constructing domain ontologies (Grcar, Grobelnik & Mladenci 2007) or identifying call usage patterns (Kagdi, Collar & 

Maletic 2007). This is distinct from the statistical collection of information to understand relationships (in for example, 

customer relationship management) which is typically referred to as data mining (Cao et al. 2010; Li, Zhang & Wang 

2006).



Figure 2: CompositeInspector implements Software Mining

It is often said in software development that each design decision should “pull its weight” (Bloch 

2001). That is to say, it is a validation of good design if each decision provides multiple advantages 

that demonstrably outweigh the inevitable disadvantage of its added complexity.  Encouragingly, 

several  of  our  five  characteristics  demonstrate  such  emergent  advantages.  For  inspectors,  an 

emergent advantage of CompositeInspector is that it becomes possible to run  remote inspections. 

Multiple  groups  of  inspections  can  be  run  remotely  on  different  application  tiers,  passing  the 

inspection results back to the UI in a well-defined, secure manner, where they can be recombined.  

This  is  important  in  real  world architectures  where  often the UI layer  is  prohibited  from,  say,  

directly accessing the database schema.

To reiterate, throughout section 3 we are referencing our own particular implementation of each 

characteristic in order to provide a deeper analysis. Clearly, however, ours is not the only approach. 

For example,  the Naked Objects team report  (Haywood 2008.1) they are introducing pluggable 

'facets' as a method of supporting mixtures of back-end technologies, including XML and database 

sources.  This  somewhat  relaxes  their  'behaviourally-complete'  methodology and  suggests  some 

convergence (Haywood 2009).

This section has demonstrated that supporting a mixture of heterogeneous sources of UI metadata is  

an important characteristic for a practical UI generator. Having retrieved and collated all available 

metadata  from  the  back-end  subsystems,  it  is  generally  necessary  to  post  process  it.  This 

characteristic is discussed in the next section.



3.2. Pluggable Inspection Result Processors

The raw inspection result returned from the inspector invariably needs post processing before it is 

suitable  for  consumption.  For  example,  the fields generally need to be arranged in a  business-

defined order.  There  are  various  ways  to  achieve  this,  dependent  on  the  metadata  source.  For 

example, if the data is sourced from an XML document its nodes are inherently ordered (XML 

2008). But if the data comes from JavaBean properties in Java class files then it will not retain any 

ordering  information  (Gosling  2005)  so  one  must  be imposed.  In  the  latter  case,  our  adoption 

studies showed that the method used to impose ordering is open to practitioner taste. By default our 

implementation uses a 'comes after' approach, whereby each business field can specify the field that 

immediately precedes it. But some  adoption studies reported "I would rather give the properties 

priorities so that I can say 'this one comes first' instead of 'this one comes after that other one'. It's 

just more natural to me". Equally, the Naked Objects team reports “by way of comparison (and as 

an  alternative  idea),  the  Naked  Objects  programming  model  uses  an  annotation  called 

@MemberOrder,  which  takes  an  ordering  in  Dewey  decimal  notation.  So,  we  have 

@MemberOrder("1.1")” (Haywood 2008.2).

Such  explicit  field  ordering  at  the  business  model-level  has  disadvantages,  however,  as  one 

practitioner noted "adding [field ordering information] to basically every field of your business 

model strongly reduces clarity... one of the key principles of [pluggable inspectors] is the possibility 

to directly use your unchanged domain objects [but this] doesn't really follow that principle”. It is 

also less flexible in cases where “one wants to automatically create many different views based on a 

single  business  object  with  components  of  different  sequence  and  visibility”.  The  alternative, 

ordering the fields at the UI-level, introduces duplication - re-stating the fields used in a business 

object (Jelinek & Slavik 2004) - and compromises polymorphism - the UI needs to statically know 

the  fields  in  advance  -  but  practitioners  advocated  both  sides:  “I  agree,  the  default  behaviour 

[model-level ordering] should be as it is now... still, I see [UI-level ordering] as an advantageous 

option for cases with specific concerns such as flexibility".

Field  ordering,  then,  whether  specified  by  the  back-end  or  the  front-end,  must  be  pluggable. 

Another example of an inspection result post processing operation, open to similar interpretations of 

practitioner taste, is excluding fields: should the model-level dictate which fields are to be excluded 

from the UI, or should this be decided on a per-screen basis? Most likely, a combination of both 

would be required – some clearly inappropriate fields, such as database primary keys, should be 

excluded from the UI at the model-level whereas other fields may need excluding on a per-screen, 

or per-user-role basis. Such post processing requirements are commonplace and a UI generator that 



does not accommodate different practitioners' preferred approaches would limit its appeal.

Our implementation addresses this characteristic of supporting multiple ways to post process the UI 

data  by  defining  pluggable  'inspection  result  processors'.  It  defines  a  minimal 

'InspectionResultProcessor' interface and ships with a number of implementations of this interface 

to support post processing metadata. Distinct from inspectors, which are designed to be detached 

from the UI and executable on application tiers inaccessible to the UI, InspectionResultProcessors 

maintain a reference to  the current  UI page.  This is  required for  the aforementioned ability to 

implement UI-level ordering and exclusion.

This section has demonstrated that supporting a variety of ways to post process UI metadata is an 

important  characteristic  for  a  practical  UI  generator.  Once  post  processing  is  complete,  the 

inspection result is ready to drive the UI generation, as discussed in the remaining three sections.

3.3. Pluggable Widget Builders

An SSOT acts as a valuable starting point for UI generation. We have discussed how, in industry,  

this  metadata is seldom centralised but rather must be brought together from disparate sources. 

There does not appear to be any movement among industry systems to converge this situation. On 

the contrary, the movement is generally towards  additional types of subsystems, such as business 

rule  engines  (Rouvellou  et  al.  1999).  Similarly,  and despite  research  community  ideals  to  the 

contrary, industry UI frameworks continue to diverge.  Most notably,  the Web browser does not 

appear to be the ubiquitous UI for which many were hoping.

For example, when Apple debuted their iPhone in 2007, they originally advocated their Safari Web 

browser  as  the  recommended way to  develop applications  for  the  mobile  device.  A year  later, 

however,  the pressure for native UIs was recognised and a traditional  SDK was released.  This 

allowed better  performance and access  to  device-specific  hardware  such as  accelerometers  and 

third-party peripherals  (Square  2010).  The  Google  Android  mobile  platform similarly supports 

native UI applications in addition to browser-based ones. Even if the browser were to become the 

ubiquitous UI, the plethora of Web frameworks and approaches to Web development (Shan et al. 

2006) suggest there will not be a convergence of UI platforms in the near future.

This need to support a variety of front-end frameworks was apparent in several  adoption studies. 

One reported: “We needed to integrate with a Spring MVC app, and in the future we may want to 

integrate with some existing Swing applications... also possibly Java Server Faces (JSF)”. Another: 

"if I'd had to [design my architecture] differently because of [your implementation] I would have 

been unhappy. As things are I was just able to treat it as a normal Swing widget which was nice".



Another important requirement for a UI generator is that it support third-party, or custom, widgets. 

This is important not only for flexibility but also robustness. For example, a frequent problem when 

developing Web applications  is  ensuring  compatibility  across  browsers.  By leveraging existing 

widget libraries, rather than attempting to generate HTML directly, a UI generator can delegate all 

issues of browser incompatibility to the widget library – which has typically already been vetted in 

a  variety of  production environments.  An  adoption study from an earlier  action research  cycle 

criticised  “if  you  have  a  more  exotic  GUI  component  used  for  certain  properties,  [your 

implementation requires] more work needed to get that to render, as opposed to simply creating the 

component in your GUI layer”. After we improved this, adoption studies from later action research 

cycles reported: "We wrote our own widget builder.... [to use custom] components we developed 

and Metawidget instantiates them”.

Implicit to this requirement to support third-party widget libraries is the ability to mix  multiple 

third-party widget libraries in the same UI, as shown in figure 3. Most third-party libraries only 

specialise  on  a  certain  set  of  widgets,  rather  than  trying  to  replace  every widget  the  platform 

provides.

Figure 3: Mixing multiple widget libraries in a UI

Our implementation  addresses  this  characteristic  of  supporting  mixtures  of  widget  libraries  by 

defining pluggable 'widget builders'. It defines a minimal 'WidgetBuilder' interface and ships with a 

number  of  implementations  of  this  interface  to  support  popular  UI  frameworks,  such  as  the 

aforementioned Spring  MVC,  Swing and  Java  Server  Faces.  Notably,  our  implementation  also 

supplies a CompositeWidgetBuilder, named after the composite design pattern (Gamma et al. 1995), 

to  support  combining the  widget  libraries  from multiple  WidgetBuilders.  The  ordering  of  the 

WidgetBuilders is significant, so that widget choice can prefer one third-party library's widgets over 

another, or fall back to the default platform widgets, as shown in figure 4.

File upload widgets
from widget library #2

Standard widget

Date picker widget
from widget library #1



Figure 4: CompositeWidgetBuilder combines multiple widget libraries

As with inspectors, widget builders demonstrate emergent advantages. Specifically, they present a 

compelling use case for practitioners to adopt UI generation. Once the developer has delegated their 

widget creation to a widget builder, it becomes possible to plug in new widget libraries as they 

become available – either new versions of existing libraries, or competing libraries offering more 

desirable widgets. For example, a third-party widget library may be released that offers a 'colour 

picker' widget with a user-friendly colour wheel. Imagine a practitioner has an application whose 

existing approach is to present a text field constrained to only accept hexadecimal input in RGB 

format (e.g. #ff00ff). The text field works, but the practitioner decides the colour wheel is more 

usable (it  doesn't require the user understand hexadecimal,  for one). Using widget builders, the 

practitioner would simply need to insert a WidgetBuilder for this new widget library as the first in a 

CompositeWidgetBuilder's list of priorities. Every screen in the application that previously used the 

hexadecimal text field would be immediately upgraded to use the colour picker, and this would 

happen automatically across the entire application – a significant saving in practitioner time over 

upgrading each screen manually. Notably, the WidgetBuilder itself could be provided by the widget 

library author, their  incentive being to increase ease-of-adoption of their library.  This reasoning 

extends  to  other  areas  of  our  pipeline  too,  such  as  inspectors,  widget  processors  and  layouts 

(covered in subsequent sections): an author of a new product, such as a business rules engine, a 

validation subsystem, or a layout manager, could increase its install base by providing UI generator 

plugins for it – alleviating the need for a practitioner to learn much of their  product's API and 

significantly easing its adoption. Such plugins are not unprecedented, and grow the ecosystem of a 

product segment by levelling the playing field for new entrants. For example, database vendors 

typically provide plugins to popular ORMs so as to ease adoption amongst practitioners using those 

ORMs.

This  section  has  demonstrated  that  supporting  mixtures  of  widget  libraries  is  an  important 

characteristic for a practical UI generator. Widget builders simplify the process of choosing the 



most  appropriate  widget  for  a  business  field.  Simply  choosing the  widget  is  rarely  sufficient, 

however. There are generally a host of supporting technologies that also need to be attached, such as 

data validators, data binding frameworks, and event handlers. This characteristic is discussed in the 

next section.

3.4. Pluggable Widget Processors

In raw form, a widget is not likely to be suitable for inclusion in a UI. For example, end users 

interacting with a raw text field are able to enter arbitrary text. However the business requirement 

may be for,  say,  a  credit  card number.  Widgets therefore need to  be further adorned with data 

validators, data binding frameworks and event handlers. Of particular note is that some of these 

mechanisms, such as validators, may come from a different third-party library than the raw widget.

Processing  such  adornments  is  made  difficult  because  of  a  general  problem  with  automatic 

generation of any kind, not just UI generation: generated code is opaque to the practitioner. It is 

difficult to reference and attach mechanisms to objects that are not well-known in advance. One 

early adoption study identified this as “when you want to customise [the generated widgets], like 

replacing or adding more info to [them] you have to refer to them by property names. We have this 

problem not only for [UI generation], but when you have a lot of dynamic stuff [such as ORM 

frameworks]. It  would be nice to either solve this or offer a solution for that”. Another gave a 

concrete example, needing “a way to attach event handlers to widget value changes. This would 

allow you to respond to change... not just do a bi-directional binding (for example you could enable 

a save button that starts disabled)”. A third adoption study had custom mechanisms they wanted to 

attach: “[we'd like to be] able to integrate our own validation and custom rendering of components”.

Practitioners  require  a  pluggable  mechanism  that  allows  post  processing  of  a  built  widget. 

Critically,  this  mechanism must  expose  the  same  richness  of  metadata  as  the  original  widget 

building did, so that widgets may be identified not just by their name but also by their type, their  

constraints, their labels or any amount of other metadata.

Our  implementation  addresses  this  characteristic  by  defining  pluggable  'widget  processors'.  It 

defines a minimal 'WidgetProcessor' interface and ships with a number of implementations of this 

interface  to  support  popular  adornments,  such  as  the  aforementioned  data  validators  and  data 

bindings, as shown in figure 5. Many of these implementations are defined by third-party libraries, 

not  by  the  same  base  UI  library  as  the  raw  widget.  Notably  the  list  of  widget  processors  is 

maintained not by an immutable CompositeWidgetProcessor, as with CompositeWidgetBuilder, but 

by a  mutable list.  This  is  important  so that  individual  UI screens  can  dynamically add widget 

processors that, say, attach event handlers. The methods these event handlers call are, by definition, 



tied to a particular UI screen rather than being immutable across the entire application. If we were 

to  implement an immutable CompositeWidgetProcessor we would be unable to add such event 

handler processors without invalidating the immutability of the overall composite. Equally however 

many other types of widget processor, such as data validators and data bindings, are not tied to a 

particular screen and are immutable. We do not want to unnecessarily instantiate multiple instances 

of such processors. Designing the widget processors as a mutable list, therefore, allows us the best 

of both approaches.

Figure 5: WidgetProcessors allow post processing of a widget

This section has demonstrated that supporting a variety of ways to post process UI widgets is an 

important characteristic for a practical UI generator. Following post processing, the widget is robust 

enough to be placed in front of the user. However, it still remains to lay it out appropriately among 

its siblings. This final characteristic is discussed in the next section.

3.5. Pluggable Layouts

Having inspected, built and processed the final widget its layout on the screen is perhaps the most 

intractable issue in UI generation.  In particular,  it  significantly detracts from the practicality of 

automated  generation  if  it  in  any  way compromises  the  final  product  in  usability,  or  even  in 

aesthetics (Myers, Hudson & Pausch 2000, p. 13). This realisation exposes a myriad of small details 

around UI appearance, navigation, menu placement and so on. The problem is so difficult, in fact, 

we believe it insoluble.

Our implementation sidesteps the issue by sharply restricting the bounds of its generation (Kennard 



& Steele 2008). Specifically, it does not attempt to generate the entire UI. Rather, it focuses on 

generating only a small piece of it – the 'inside' of each page, the area around the fields themselves. 

Ultimately, this is the only piece that is actually constrained by the back-end architecture. The UI 

appearance, navigation, menu placement and overall usability are far more device-specific, not to 

mention specific to the aesthetic taste of the UI designer. We explicitly keep these out of scope. Our 

adoption studies  confirmed:  "I  think  that  although  it  is  theoretically  possible  to  solve  this 

[automatically],  in  practice,  it  is  generally  not  feasible  to  re-write  the  view  into  different 

technologies [automatically]. Even in scenarios where you have to design, for instance, the same 

screen  with  different  versions  for  desktop  and  mobile,  the  screen  cannot  fit/support  the  same 

functionality". Human-based, aesthetic judgements must be made as to what can fit, what can be 

supported, and what is most usable.

As testament to how impractical generation of an entire UI is, even after restricting UI generation to 

just  the area around fields we find there is  still  a  formidable degree of  variability.  Fields  may 

typically be arranged in a 'column', with the widget on the right and its label on the left. But other  

times the practitioner may want two or three such columns side by side. If so, they may need some 

widgets  – such as large text  areas – to  span multiple  columns. Or they may abandon columns 

altogether and want the fields arranged in a single, horizontal row. Furthermore, it is not difficult to 

posit other real world arrangements, such as right-to-left arrangements for the Arabic world. It is 

important to accommodate this variety if the generator is to achieve the exact look the practitioner 

desires. If it cannot achieve that exact look, the practitioner is compromising usability – the most  

determining factor of a UI – for the sake of automatic generation (Myers, Hudson & Pausch 2000, 

p. 13).

Our implementation addresses this characteristic of supporting multiple ways to arrange widgets by 

defining pluggable 'layouts'.  It defines a minimal 'Layout' interface and ships with a number of 

implementations of this  interface to support different layouts.  Notably,  our implementation also 

supplies  a  LayoutDecorator,  named after  the  decorator  design  pattern  (Gamma et  al.  1995),  to 

support  decorating one  layout  with  another.  For  example,  fields  may need  to  be  divided  into 

sections separated by headings, or sections divided into tabs in a tab panel. Such concerns should be 

orthogonal to the field arrangement themselves (i.e. one column or two columns, labels to the left of 

the widgets or the right) to curb a combinatorial explosion of UI options, as shown in figures 6 and 

7.



Figure 6: Layout decorated with tabs inside  

section headings

Figure 7: Layout decorated with section headings 

inside tabs

Adoption studies informed and agree the benefits of achieving parity between the UI designer's 

intent and the automatically generated UI are invaluable:  “It  is really hard to keep consistency, 

visual or functional standards when building [a] GUI in a large team. However, when it is generated 

dynamically, the rules are centred and even the customisation is somehow controlled”.

As  with  inspectors  and  widget  builders,  layouts  further  demonstrate  emergent  advantages. 

Specifically,  it  becomes  possible  to  mix  layouts  from third  party widget  libraries.  Third  party 

libraries often supply 'layout widgets' in addition to their data entry widgets. For example they may 

provide collapsible panels. If the practitioner is accustomed to using these layout widgets, the UI 

generator must support them or it will not be able to achieve parity with the original UI design. In 

addition,  leveraging  layout  widgets  affords  the  inherent  robustness  of  delegating  Web  browser 

incompatibility issues, as discussed in section 3.3.

This section has demonstrated that supporting multiple ways to arrange widgets is an important 

characteristic  for  a  practical  UI  generator.  This,  combined  with  the  other  four  characteristics 

demonstrated in previous sections, results in a richly flexible UI generator. As shown, many of these 

five characteristics individually exhibit emergent advantages. However, when all five are combined 

there is a further emergent advantage – one that appears unique in the literature. We turn to this 

advantage in the next section.

4. Retrofitting

The  previous  section  demonstrated  five  characteristics  that  are  necessary  for  a  practical  UI 

generator.  In  addition,  it  showed  how these  characteristics  give  rise  to  a  number  of  emergent 

advantages, which in themselves are an encouraging validation of their value. However there is a 



further notable advantage that emerges when all five characteristics are present in a UI generator - 

an advantage that is seldom even discussed, much less targeted, in the literature. Specifically, these 

five characteristics combined make it possible to retrofit UI generation into existing applications.

Retrofitting is a laudable but largely unpursued goal. It is laudable because the number of existing 

applications, both mature and currently under development,  far  outweighs the number of 'green 

field' applications that could reasonably be expected to adopt a new UI generator. The ability to 

remove boilerplate code from  existing applications, in addition to preventing boilerplate code in 

new ones, has potential  savings of many orders of magnitude.  Retrofitting is largely unpursued 

presumably because it requires a level of UI generator flexibility, particularly flexibility towards 

back-end architectures,  that  is  difficult  to target.  However  several  adoption studies  successfully 

applied our implementation to existing applications.  This included them being able to  partially 

migrate applications one screen,  or even one piece of a screen,  at  a time. This prompted us to 

conduct internal experiments retrofitting our implementation to other projects. For example,  we 

chose three applications from the samples included with the Open Source JBoss Seam distribution 

(JBoss Seam 2010). We discovered the retrofitting activity encompassed three main areas.

First was to explore what existing metadata could be leveraged from the application's back-end 

architecture. For example the Seam Hotel Booking sample contained some UI metadata embedded 

within its persistence subsystem, some within its validation subsystem, and some within a scripting 

language. Conversely, the Seam DVD Store sample contained UI metadata embedded within its 

BPM subsystem. We were able to plug in inspectors for each of these. The second activity was to 

introduce UI metadata that did not exist in the application but was required for generation. For 

example  business  field  ordering  information  had  to  be  incorporated.  The  final  activity  was  to 

replicate the application's original UI appearance. We were able to plug in  widget builders for this. 

In particular, we were able to plug in a mixture of widget builders to replicate the application's  

original choice of two third-party widget libraries.

Overall there was a significant amount of existing code that could be removed, though notably some 

new code also had to be introduced - such as field ordering information and configuration files. 

Nevertheless, when comparing aggregate sizes of the files in the sample projects before and after 

retrofitting, we realised between a 30% to 40% reduction in UI code through the introduction of our 

implementation. For some individual files this metric was as high as 70%, as shown in figure 8. On 

the left is the original XHTML source code for a single UI screen, and on the right the retrofitted 

version (the source code is not meant to be legible in the figure, it suffices just to be able to discern 

its structure). The red boxes and lines convey which portions of the original source were able to be 

replaced, and their equivalent size in the retrofitted version.



This  section  has  introduced  retrofitting  as  an  emergent  advantage  of  the  five  characteristics 

demonstrated in the previous section. The ability to retrofit existing applications is an encouraging 

indicator of the overall value of the five characteristics. We now turn to this 'overall value' for our 

final section.

Figure 8: Portions of code saved by retrofitting



5. Summary, Conclusions and Future Work

This article has emphasised the need for UI generation within mainstream software development, 

and underscored impracticalities with existing approaches. It has employed practice based research 

and  human  centred  design  approaches  to  identify  five  characteristics  that  are  necessary  for  a 

practical  UI  generator.  Interviews,  adoption studies  and  industry  collaboration  suggest  these 

characteristics  are  key to  the  real  world  adoption  of  a  generator.  These  characteristics  can  be 

summarised as:  inspecting existing,  heterogeneous back-end architectures;  appreciating different 

practices in applying inspection results; recognising multiple, and mixtures of, UI widget libraries; 

supporting  multiple,  and  mixtures  of,  UI  adornments;  applying  multiple,  and  mixtures  of,  UI 

layouts. Many of these characteristics seem ignored by current UI generators and we believe this is 

hindering their widespread adoption. This article has further identified the impact of implementing 

all five characteristics: they allow practitioners to retrofit UI generation into existing applications. 

This significantly broadens the range of applications amenable to UI generation and increases its 

value to practitioners.

This article has drawn several far reaching conclusions. First, that any UI generator that seeks to 

dictate,  rather  than  adapt  to,  a  system's  architecture  has  limited  practical  value.  Second,  it  is  

important to appreciate that the need for diversity in industry architectures is not because most 

business  systems  are  poorly designed.  Rather,  it  is  because  business  systems  seek  to  leverage 

functionality provided by a large number of mature subsystems available in industry, in order to 

increase productivity and reduce development cost. Finally this article has emphasised that action 

research, as a methodology for research and development, is fundamental to the usefulness of a 

resulting product in supporting diversity and richness of practice.

Immediate future work will concentrate on further developing our UI generator implementation. 

There are many design decisions for which the five characteristics identified in this article could be 

implemented either way. For example, there are opposing schools of thought whether generation 

should  be  runtime  based  or  statically  generated.  We  also  plan  to  continue  evaluating  our 

implementation against real world business systems, to assess the degree to which those systems 

can be retrofitted to reduce UI code. A longer term goal is to standardise the five UI generation 

characteristics, such that they can be adopted as part of mainstream UI development.
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