Metawidget White Paper

Adoption Studies

Richard Kennard
July 2011

http://metawidget.org

1. Introduction

This white paper presents a collection of adoption studies from companies using Metawidget. Adoption
studies are interviews focused on adoption of a technology within an interviewee's organisation. The goal is
to draw out all experiences and to understand usage and the environment in which the adoption occurred.
These learnings are then followed by a period of reflection to assess strengths and weaknesses. The findings

are used to identify ways to improve Metawidget.

http://metawidget.org/

2. Adoption Study 1

Industry: Energy efficiency company based in Bulgaria, involved with receiving funds from
the European Union Commission and assigning it to projects within their country.

Application: Internal, desktop application

Technologies: Java, Swing, JPA

Calendar Help

iarant

Partner: Test Partnerl

|

|

Report date: |
Mame: |

| =

Skakus: B

Requested amount:| 30Jgug|:|

Granted amount: | D| $|

Teachers Project

e

Education Summit in Sofia, Bulgaria

Cue date: |

|
Submission date: | |
|

Ul base: | somewhere

Motes: Long Moke

Organizakion: Balkan Trust For Democracy

Clear

2.1. Synopsis

This adoption study was conducted by interviewing the lead developer.

The lead developer first described how, after being assigned a new project, he started thinking along the
same lines as Metawidget. “I perceived the need, then a few days later as I was thinking of how to create a
smaller scale version of what Metawidget is (due to client time constraints) I found Metawidget on [an
industry Web site] and couldn't believe my luck — it fit the bill perfectly”. Metawidget is promoted on
industry Web sites after each new release, as a means to gain exposure. A typical promotion would be a short

write-up of the features included in the new version, with links for finding out more information, such as to

user manuals or blog entries. Regarding the need the lead developer had perceived, had he used products that
addressed this need before? “Nothing that has to do with the user end. But of course, [the ORM] Hibernate

comes so close, and it goes the other way, toward the DB layer”.

The interview then turned to discussion of the objective of Metawidget. Was integration with existing Ul
frameworks significant? “Yes, very much so. I had already decided that I would go with Swing”. Did the Ul
generation seem limiting? “I didn't feel there were any special thing I could not include by hacking around in
the SwingMetawidget code itself [because it is Open Source]”. What about integration with existing back-
end architectures? “Many frameworks or tools enforce the designer's vision on how solutions should be
architected. What I liked about Metawidget is that I could drop it in whatever architecture I was using”. For
places where the back-end architecture had to be augmented with additional UI information (for example, the
order of fields), did the developer prefer separate configuration files or augmenting the domain objects
themselves? “While I appreciate the power within the XML inspectors, I used annotations to configure

Metawidget”.

Finally, returning to the overall theme of the problem Metawidget is trying to solve. Is it a common problem?
“I would say the problem is prevalent, yes”. Why has it not been addressed before? “I assume... because it is
not a 'hot' topic in the Java community. Maybe people think it is too easy to solve. Maybe people want fine
control over their Uls, and since they have not tried Metawidget they think it will invade their code (as is

common in other frameworks)”.

2.2. Reflection

This adoption study considered a project that was being newly architected, but the developer had already
chosen his front-end (Swing) and back-end (Hibernate) before considering a Ul generator. Therefore, it

would not have suited him had the UI generator attempted to dictate the architecture.

During implementation, the developer preferred direct augmentation of the domain objects to separate
configuration. This has the advantage of ease of development and ease of maintenance because of reduced
duplication, but at the price of increased coupling between the Ul and the domain objects. The weighing of
such pros and cons is at the developer's discretion, so again it would not have suited him had the Ul

generator attempted to dictate one way or the other.

Finally, whilst the developer understood the problem and liked the solution, he felt that in order to address it
in the wider community it needed to become a “hot topic” — it was important to get people to try Metawidget.
This emphasises the necessity of well-designed, accessible resources: screenshots, demos, product

comparisons, testimonials and a variety of other promotional materials.

3. Adoption Study 2

Industry:
Application:

Technologies:

U.S.-based biopharmaceutical company specialising in molecular diagnostics

Web application
Java, Spring, JPA

Barcode:
First name:
Middle name:
Last name:
Url:
Active flag:

Home | Logout

Lookup Table Maintenance

Edit Record

101
Joe

[
Smith

joe_smith.png

Home | Logout

Lookup Table Maintenance

Edit Record

Product: [BRACARalysis - BRACAnalysis ~|
Mutation Severity: [|
Report document:
Active flag:
Default flag:
Update date: 20
Update user id: rcornia

Update date: 2009-02-05
Update user id: system

=N =

=S £

3.1. Synopsis

This adoption study was conducted by interviewing the team lead.

I began by discussing the team's need: “this was initially used for a new application. We wanted a way to add
(easily) lookup table maintenance in our application tables so users could manage those changes themselves
without having to enlist a developer or DBA to make the changes”. How did they attempt to address this?
“Initially we wrote our own lookup table maintenance widget in Swing. This worked well, but could not be
applied to web applications as we began moving in that direction. The discussion revolved around how to
reuse as much code as possible from our Swing implementation in a web version. Being a common business
problem, I searched for pre-existing tools and frameworks to fit this need, rather than write our own”. The
team considered it a common business problem because “with previous companies, we wrote our own,
simple frameworks for editing look up tables”. So the developer had repeatedly built such frameworks?
“Yes, in several different positions. They all worked, but lacked the flexibility and applicability to a large

range of problems. None were cross UI”.

This time the team decided on a different approach. Building their own framework “did not add any business
specific value if we could find a third-party solution that solved the same problem”. What type of third-party
solution were they looking for? “I would say we were looking for ease of use, yet flexible; something that

required minimal code to get the job done; cross Ul was important but ultimately would not have been the

single driver”. Whilst being cross Ul is an emergent property of Metawidget's objective, it is not a primary
one. Rather, being 'UI agnostic' is. Was this important? “We needed to integrate it with a Spring MVC app,
and in the future we may want to integrate with some existing Swing applications... also possibly Java

Server Faces (JSF)”.

What impact did Metawidget have on development? “it made sense very quickly... setting up our initial
prototype screen was very fast. I believe we had a working prototype in a few hours, certainly well under a
day. That is a much smaller investment than had we written something from scratch”. What did the team
decide regarding places where the back-end architecture had to be augmented with additional UI
information? “There was some spirited debate, since [augmenting the business objects can] degrade
gracefully if not in use. It still, to us, seemed cleaner to put Ul-specific code outside of our business objects

[in XML files]”.

Returning to the overall theme, is this a prevalent problem? “Absolutely. In 10 years of software
development, I can't count the number of times I've needed a simple form for users to enter or update data. I
think it is a problem that has likely been 'solved' by many in their own specific companies, but no one has
extended that in a general way to apply to a broad audience. Certainly there have been 'form code

generators', but creating the form at runtime from metadata is a far more elegant approach in my opinion”.

3.2. Reflection

This adoption study underscored that application architectures change from project to project. The team had
moved from building Swing applications to Spring MVC ones, and were considering JSF in the future.
Whilst being cross UI was not critical to them for any one project, being UI agnostic across multiple projects

was. A Ul generator that tied itself to any one architecture would have limited appeal over the long-term.

A key driver for the adoption was the recognition that UI duplication was a “common business problem”.
The team lead expressed a desire for it to be solved by a third-party because solving it internally “did not add
any business value”. He recounted how he had built similar solutions to Metawidget for internal projects at a
number of companies. He opined that other developers had probably done the same. This suggests there may
be a latent body of knowledge around building UI generators that exists behind company walls. It may be a
powerful approach to bring this knowledge to the fore, encouraging public debate and exposing lessons

learned. This again suggests a need to promote and raise awareness of the issues surrounding UI generation.

In general, however, this was a positive adoption study. Not all adoption studies would be so successful, as

we shall see next.

4. Adoption Study 3

Industry: Enterprise Resource Planning
Application: Desktop application
Technologies: Java, Swing

Taskstatus

= nieuw ¥ Ververs Bopslaan | @ verwnder Zoek Trler || 14}

Taakstatusnr: 1
Omschrijving: Think Tank
Valgorde: 100

4.1. Synopsis

This adoption study was conducted by interviewing the lead developer.

Was this a new project, or already built? “Already built. I was creating the '2.0' version, switching from a
direct SQL-based to an object-persistence approach”. Why switch to Metawidget? “I already used dynamic
screens... so I understood Metawidget's applicability immediately. I was aware of the need, since — because
of the 2.0 version — I was rebuilding a lot of very simple screens”. Taking advantage of the opportunity
afforded by the 2.0 rewrite, the developer was trying to keep everything as generic as possible: “classes
handling [generic] instance navigation, classes to keep track of what instances were changed, classes for
rendering 1-N relations, et, etc. About when I had most generic code componentised, I noticed that I was
copy-pasting the actual panels from which a screen is built; copy panel, replace entity, change labels and

fields. I figured that should be componentised as well. This is when I introduced Metawidget.”

How did the introduction go? “It did seem complicated. I understand the need to support multiple platforms,
but maybe it is wise to provide some sort of pre-set access points, if you understand what I mean”. Was the
switch ultimately successful? “[No.] I found Metawidget to be somewhat too generic... very often I decided
after a while to still build a specific panel instead. It is not that much work and the screen is just that little bit
more tuned”. Could this be improved by augmenting the business model with additional Ul information?

“Naturally I can add a lot of UI information to the business model, but I'm a strong believer in layers (for as

long a possible) and Ul information simply does not belong in a business model”. As an alternative,
Metawidget allows the developer to keep Ul information in separate metadata files, but doing so does not
solve the issue of duplication — fields must be declared and maintained in both the business model and the

metadata files.

Perhaps Metawidget could at least validate the duplication, to ensure consistency? Would that be useful?
“['Yes.] Validation is paramount if you have a layered architecture”. Many object-persistence frameworks
perform such validation between the business model and the persistence layer, does the developer use that?
“INo.] For persistence I [augment the business model], this matches the view I have of persistence; it is an
integral part of the business model”. So persistence information belongs in the business model but Ul
information doesn't? Isn't that inconsistent? “I know this differs from other approaches, but every developer

has his stubbornness (laughs)”.

There were additional reasons Metawidget did not succeed: “if you have a more exotic Ul component used
for certain properties (JCalendar?), there is more work needed to get that to render, as opposed to simply
creating the component in your Ul layer”. Also: “the additional information required to get the layout in
Metawidget right, competes with the amount of code needed for a custom panel... I use JGoodies binding,
MigLayout and some utility classes, so creating a form consists of 2 lines and adding a field is 4 lines: create
the component, bind it to the property, place it on the panel. Simple, minimal lines of code, understandable”.
Although simpler, is it less maintainable managing duplication between the domain objects and the Ul layer?
“That is initially the biggest advantage of Metawidget; it automatically updates the UI. But if you just let it
do its thing, after adding the field, then it is dumped somewhere on the screen... [to reposition it] you need
additional UI information... I may not even want [the field] to display. Changes to the business model layer
may automatically have unwanted consequences for the layers above”. As a suggestion: “can't we have a
SortingInspector which I provide with an array of property names, and those names come first in their
array order, while the rest is appended alphabetically?”. Overall: “I find the level of abstraction... not
sufficiently rewarding above simply coding it out. For fat clients I believe the generic layout is not the
quality of screens that people expect. The finer details get in the way. For [thin clients] this is less of an

issue”.

4.2. Reflection

This adoption study was revealing precisely because it was negative. The developer understood the problem,
and tried Metawidget as a solution, yet concluded solving it automatically offered no compelling advantage

over solving it manually. Six points stand out:

First, Metawidget's flexibility can make it seem complicated at first. A more considered approach with some

sensible defaults may smooth the initial experience'.

1 This reflection, and others like it, led to the introduction of pre-configured Metawidgets.

Second, there is a level of personal choice over the 'purity' of separation between layers. Adoption study 1
were with developers happy to augment the business model with whatever metadata was required: Ul,
persistence, XML serialization and more. Adoption study 2 found developers who wanted to keep the
business model free of anything unrelated. This adoption study found a developer who tolerated some
metadata (persistence) but not others (UI). It is not clear which approach is better, if any. What is clear is the
debate over purity of architecture is beyond the scope of a Ul generator: any Ul generator that attempts to

dictate the approach alienates a segment of its audience.

Third, developers who choose to keep Ul metadata in separate metadata files, as opposed to augmenting the
business model, do not see as much benefit from Metawidget because they still have to maintain duplication
between the metadata files and the business model. This situation could be improved. For example

Metawidget could validate the metadata files in the same way many persistence solutions do?.

Fourth, whilst Metawidget does support third-party Ul components, currently this requires more work on the
developer's part than necessary. Metawidget should improve its third-party component support — especially,
on reflection, mixing third-party component libraries in the same project. If the developer wishes to use, say,
the third-party JCalendar (as a date picker) that should not preclude using the third-party JFreeChart (for

charting). This should also extend to any custom components the developer may have created”.

Fifth, there was a desire for a different mechanism to sorting fields than the default annotation-based one (the
developer annotates each field with a @UiComesAfter annotation). Specifically, a request to be able to
“provide an array of property names” to an inspector. This requirement sits uncomfortably within
Metawidget's architecture, because presumably the array of names must be specified per Ul screen yet
currently inspectors do not have any direct connection to the screen. This is an important design decision
because some inspectors are designed to run remotely on different application tiers, where there is no screen
available. Indeed some inspectors need to run on heterogeneous platforms to their Ul widget. For example a

Java-based back-end inspector may return information to an ECMAScript-based front-end widget”.

Finally, it is apparent there is a tipping point to the usefulness of Metawidget, based on the initial overhead of
introducing it into a project. For an application with a small number of unique-looking screens it is more
cumbersome than working by hand. As the number and similarity of screens increase, Metawidget becomes
more compelling. The challenge is to reduce the initial overhead so as to move the tipping point as close as

possible to being useful for applications with small numbers of screens.

2 This reflection, and others like it, led to the introduction of

BaseXmlInspectorConfig.setValidateAgainstClasses

3 This reflection, and others like it, led to the introduction of widget builders.

4 This reflection, and others like it, led to the introduction of inspection result processors.

5. Adoption Study 4

Industry: Light and sound engineering at the New York City College of Technology (part of
CUNY)

Application: Desktop application

Technologies: Java, Swing

File Edit Playback Help
‘\\‘\I‘\\‘\I‘\\:‘\\l\\‘\
h bRkl 53 6 l7

B

\‘\
o

\‘I \‘\
o h1

\‘\
h2

\‘\ \‘\
h3 ha

I‘\
s

Pressts: I~

] Label: ’7
. . Comment: ’7

Muted:

o

Length: 12.960000038146973

soload: o

Interpolation type*: [LINEAR H

Output definition: Host:

llocalhost]
Pod number: 1 E
[H

Usbor number:

Track =

O

Axis 1: 0

Axis 2: -543

Axis 3: 0

Axis 4 543

Axis 5:0

Axis 6: 0

25.0 -

5.1. Synopsis

This adoption study was conducted by interviewing the lead developer.

I began by discussing the project and Metawidget's role in it. “The project I am working on now is a time-
line editor... [for] controlling robots, theatre lighting and sound playback. I tend to design Uls that
correspond very closely to the back-end data model. Each object on the screen can usually be selected and
edited in a side pane. That side pane is an obvious application of Metawidget”. With reference to the
screenshot: “The project uses Metawidget in two places: one, as an object editor (top right pane) and two, as
a read-only output status display (bottom right pane). One of the really important reasons I used Metawidget
for this was that I have plug-ins (three of them as of now) that provide data objects for, and 1/O support for,
different types of [theatre] systems. I wanted to be able to just add data objects and have them be

immediately editable without needing to implement any UI code at all.”

What led the developer to Metawidget? “I was looking for a tool to auto-generate Uls”. Had the developer
encountered similar tools in the past? “Not [as] products per se, just homebrew... I've implemented my own
tools that do the same thing in both Java and Python... so I knew it was possible and useful”. Clearly the
homebrew Python tool would not be suitable this time because the new project needed to be Java-based. But
the homebrew Java tool was not suitable either? “[No, it] extracts information from an OWL ontology

instead of [Java]beans”. So being able to integrate with existing front-end and back-end architectures was

important? “Sort of. [This was a new project so] the API was written with Metawidget in mind, but if I'd had
to do it differently because of Metawidget I would have been unhappy. As things are I was just able to treat it

as a normal Swing widget with was nice”.

There were some shortcomings, however. The developer found Metawidget lacked “a way to attach event
handlers to widget value changes. This would allow you to respond to change... not just do a bi-directional
[data] binding (for example you could enable a save button that starts disabled)”. Also “I found that there is
no good way to define the order of the widgets on the Ul across different levels of the class hierarchy”. The
developer explained he had many derived classes, some of which were externally defined by his plug-ins,
and therefore needed fine-grained control over widget ordering. “I want, say, name to always appear at the
top of the UL I also want all properties in one class [to] appear in a specific order without other properties
between”. Metawidget does have such facilities — were they insufficient? The developer had “tried both the
QUiComesAfter annotation and XML files. RUiComesAfter doesn't define a strict order (only that one
property should be after another). XML works but a section in the XML file would be needed for every
derived class because the ordering does not automatically apply to derived classes”. What would have been
better? “[@UiComesAfter requires] naming lots of properties (that might be in superclasses) in the
annotations [which] breaks modularity a bit. The superclass might change after all and that could break
everything if you name specific properties. I would rather give the properties priorities so that I can say 'this
one comes first' instead of 'this one comes after that other one'. It's just more natural to me”. With respect to
the XML approach “I found that I could get it to work, but I had to specify that [the] subclass should inherit
from [the] superclass in the XML file. I guess the real issue is that I think this inheritance should be implied
by the fact that [the] subclass extends [the] superclass [in the Java code]”.

Finally, the discussion turned to the overall usefulness of Metawidget. “I don't do enough front-end coding to
speak on the overall usefulness of this type of tool in general. However I'm not very good at UI development
(and I don't enjoy it), so I find it very useful to be able to say 'l want a UI for this bean' and have one
generated automatically without any work on my part”. So Metawidget saved you writing code? “I think
Metawidget's binding implementations are critical. Without them you still have to write [UI helper code] for
every class that touches the widget for every property (to fill in the values). My main use case was allowing
plug-ins to add data classes that the user can interact with without [the developer| needing to do any Ul

coding”.

On the whole a success? “I was really happy with Metawidget and I will probably use it again... I have
thought about using it to build Uls for OWL individuals (the properties would be extracted from the ontology
and that sort of thing)”.

5.2. Reflection

This adoption study contained a further reinforcement of the 'do not dictate the architecture' tenet. The

developer had written a similar tool for a Python-based front-end, but could not re-use it here. The developer
had also written a similar tool for an OWL-based back-end, but again could not re-use it here. If a tool is
written specifically for a front-end or back-end technology, changing either will likely exclude the tool as a
candidate for future projects. Such short-sighted design decisions are understandable in homebrew projects —

they are less forgiveable in dedicated frameworks.

It is particularly worth emphasising that integration with existing architectures was important even though
“the API was written with Metawidget in mind”. The developer expressed that even for new projects — where
one is free to choose tools and frameworks and, having chosen them, able to make concessions as to how
they will integrate — it is impractical for any one tool to make strong demands about its place in the whole:

“if I'd had to [design the API] differently [just] because of Metawidget I would have been unhappy”.

This adoption study also highlighted areas in need of improvement. The developer found Metawidget's
existing methods for ordering widgets too awkward in scenarios involving inheritance across a class
hierarchy. The shortcomings were twofold: the XML-based metadata was implicitly ordered but required
explicit declaration of the class hierarchy”; the annotation-based metadata implicitly followed the class
hierarchy, but was not based on priorities®. This last point was another reminder that different developers

prefer different techniques: “it's just more natural to me”.

Another negative comment was that the developer had difficulty attaching event handlers to generated
widgets. This stems from a general observation that whatever is automatically generated becomes much
more opaque to, and less controllable by, the developer. There is an impedance mismatch between the API
the generator exposes and the native API of the target platform. Metawidget has this to a lesser degree,
because it 'owns' the Ul to a lesser extent, but more work should be done to reduce this mismatch where

possible’.

5 This reflection, and others like it, led to the introduction of

BaseXmlInspectorConfig.setInferInheritanceHierarchy

6 This reflection, and others like it, led to the introduction of inspection result processors.

7 This reflection, and others like it, led to the introduction of widget processors.

6. Adoption Study 5

Industry: Swiss Government
Application: Web application
Technologies: JSF, Facelets, JAXB

File Edit View History Bookmarks Tools Help

« v @ %% [©]http/ocal host:8080/smlient/compose/compose-form.seam [~ [GI~ [tive window to image®]

Welcome, administrator administrater Logout
STV BN
Help

P Header origialabsender
mesd @ Wharbeter D Name: s ¥ [azar

1234567890

a@a.com

Compose Stauerpflichtiger: he
Al

ID-Kategorie:* (123
ID-Nummer:* 21

Name: = test
Vorname © ftest
Geschlecht:* | mannlich x|
Geburtsdatum:* yearMontnDay: 7 oo
@
g
a]
year: R

yearMonth.

[

Done © 1 Error

6.1. Synopsis

This adoption study was conducted by interviewing the lead developer.

The project was a tool for use by the Swiss government. They had already built a platform for the creation
and transmission of confidential, encrypted XML messages but to date these messages were only able to be
created by machines. The government was now looking to build a Web interface so that humans could easily

create the messages.

I began by discussing what led the developer to find Metawidget: “I didn't find it, a collage of mine did. He
knew our project and I think he actively went and looked for something we could use. We wanted something
that we could use to change our XML [messages] into a [UI] form”. The developer explained there were
many types of XML message, and the prospect of developing (and maintaining) Ul representations of each
was onerous. The team considered several choices: “things I've also looked at include XML-Forms and
writing custom XSL stylesheets [to convert the XML into HTML]. Metawidget is a way better solution than

the other options”.

What were some of Metawidget's strengths? From a front-end perspective “[being] able to integrate our own

validation and custom rendering of components”. And from a back-end perspective “[being able to write our
own] inspector that knows our XML schema and can find all restrictions of the currently inspected field and
add that to the attributes returned”. Finally Metawidget was architecturally “very intuitive, [the] names are
well chosen”. Where was Metawidget less successful? “For some specific things, for instance I wanted the
fields to be in a specific order you have to extend some of the Metawidget classes, would be better if

Metawidget was even more pluggable”.

Finally, what was the developer's position on mixing Ul metadata and business model code? “I don't mind
about that, an annotation is just metadata”. And is Metawidget solving a current and prevalent problem?
“Yes, it's solving a problem, but to say that its one of the prevalent problems in software development is a bit

much I think”.

6.2. Reflection

This adoption study was notable for the amount of customisation the developer required. He needed to be
able to plug-in both his own project-specific front-end (“own validation and custom rendering”) and his own
project-specific back-end (“inspector that knows our XML schema”). Such adaptability to different

architectures was critical, in fact he would have liked it to go further and be “even more pluggable”®.

Also notable was this project's use of the Java API for XML Binding (JAXB). JAXB is a technology for
creating and parsing XML-based representations of object data. In many ways, XML could be thought of as
the machine interface to a system just as a Ul is the user interface. Indeed JAXB takes a similar approach to
Metawidget — it inspects the existing object data and class structure in order to determine an XML
representation. Where JAXB differs from Metawidget is when additional, XML-specific metadata is
required. Here, JAXB requires the developer to supply the metadata through its own, JAXB-specific
annotations. For example to declare that a property in a business class is a required field, the developer must

annotate their class with @Xm1Element:

class Person {
private String mName;
@XmlElement (required = true)
public String getName () {

return mName;

Unlike Metawidget, JAXB doesn't support extracting this metadata from arbitrary sources. It is interesting to
consider, though outside our current scope, the contribution Metawidget could make to the Object to XML
mapping domain. Metawidget's architecture already promotes a strong separation between its inspectors and

any Ul-related code. It may be possible to reuse its existing inspectors for other purposes such as this.

8 This reflection, and others like it, led to the introduction of inspection result processors.

7. Adoption Study 6

Industry: Brazilian packing industry
Application: Specialised Enterprise Resource Planning (ERP)
Technologies: Swing, OVal

T — R

V%

(1%

7.1. Synopsis

This adoption study interviewed a senior developer on the team.

As with all adoption studies, I began by discussing how the team encountered Metawidget. “We were
working on another project where we started doing some dynamic Ul generation... much more simple stuff,
like printing the required fields and formatting the numbers based on the model... and then we read an
announcement on [an industry Web site] and so I bookmarked it to take a look for the next project”. When

their next project began, the team “started from scratch with Metawidget in mind”.

Using a third-party solution instead of developing one in-house has clear advantages. But why Metawidget in
particular? “We've taken a look at other frameworks, but most of them were inactive, poorly documented or
not as flexible as Metawidget”. With Metawidget “the ability to extend it (property styles, inspectors and
widget builders) to fit to your needs [was attractive]”. Was the design of Metawidget clear to them? “Totally,
very well designed and documented”. And its focus on integrating with existing architectures important?
“Yes, we work with JDO, OVal, and some custom annotations, so being able to extend [Metawidget] was a
must for us. [Being able to integrate a data binding library] is fundamental for us, because a lot of dirty work

comes from creating the bindings”.

Where did the team find Metawidget lacking? For one, when doing “complex layouts... we had to extend the
[built-in] layout to support more complex layouts. [This is] not necessarily a lack, since Metawidget provides
means of doing it, but it would be interesting to have more powerful layouts ready [out of the box]”. What
else? “When you want to customise [the components Metawidget generates], like replacing or adding more
info to [them] you have to refer to them by property names. We have this problem not only for Metawidget,

but when you have a lot of dynamic stuff”. By this the developer meant that many dynamic frameworks,

such as ORMs, have the same problem. “It would be nice to either solve this or offer a solution for that

(maybe tooling?)”.

The team also found Metawidget lacking because of their position on mixing Ul metadata and domain model
code: “for small projects it might not be a concern, so we find [the fact that Metawidget supports] it valid,
but for larger projects where the architecture is more important, usually we want to keep a clear separation
between layers, and it is not desirable to "pollute' the model... we did not want to place view stuff into the
model, like QUiComesAfter, and we did not want to place it in an XML file either, because we would have
to replicate the property name. [Instead] we built a property style based on our properties files”. Metawidget
supports pluggable property styles, allowing the developer to redefine what is considered a property. The
team leveraged this with an innovative approach that read the property information from their localisation
resource bundles. This allowed them to avoid adding UI information into their domain model, while at the

same time avoiding duplicate property definitions.

Overall, the team found they were able to apply Metawidget widely: “all [our] Uls [screens] have
Metawidget behind [them], even the complex and most important. We wrote our own layout and widget
builder. An interesting thing to notice is that in [second screenshot at start of adoption study], both tables are
created by Metawidget. They are [custom] components we developed and Metawidget instantiates them. The
whole screen is generated dynamically by Metawidget”. The developer then reflected on the technology as a
whole: “I think that there are two main problems that Metawidget helps to solve: Independence of View
Technology and Dynamic Ul Generation, both [these problems are] current and prevalent. Regarding the first
one, | think that although it is theoretically possible to solve this [automatically], in practice, it is generally
not feasible to re-write the view into different technologies [automatically]. Even in scenarios where you
have to design, for instance, the same screen with different versions for desktop and mobile, the screen
cannot fit/support the same functionality”. The developer approved of the way Metawidget does not try to
'own' the UI. Rather it positions itself as just a piece of the larger UI landscape, recognising the uniqueness

of different platforms and devices.

Regarding the second problem the developer identified, Dynamic Ul Generation: ‘“Metawidget is really
useful in the way it is the foundation to build your solution. We had an experience in our last project, that a
lot of view related bugs would come from missing required fields, wrong formatting and changing the model
and not changing the view. Also, keeping those in synch, required a lot of effort, not complex, but we had
most of our junior programmers dedicated to fixing those silly problems. That is when we thought that
generating it based on the model would solve this, and [when] this really happened, it simplified a lot and
this category of bug has simply disappeared. Another great advantage [of Ul Generation] is UI standards. It
is really hard to keep consistency, visual or functional standards when building Ul in a large team. However

when it is generated dynamically, the rules are centred and even the customisation is somehow controlled”.

“Besides that, for simple input interfaces, or prototyping, it is simply amazing. You have to do nothing and

you have a fully functional UI. [In production] we have really complex Uls, since we have a strong usability
concern. Another approach that tries to solve this problem is using [statically generated] MDA tools. 1
personally dislike this solution, mainly because of the idea that I find really important: 'everything that you
create (generate) you have to maintain'. I did not find solution with a decent support for maintaining the

generated code, and a lot of garbage code is generated”.

If the problem is current and prevalent, why has it not been addressed? “I don't have a clear idea why it has
not been solved yet. It is not a simple question, but I think that dynamic interface generation is a strong tool
to address this problem, and the evolution of the hardware, frameworks, languages and runtimes are making
this feasible now. Take the [object] reflection performance improvements for instance, hardware capacity, the
new view technologies APIs. We have considerably complex screens being generated by Metawidget running

on modest old desktops with acceptable performance”.

7.2. Reflection

This adoption study found a team who had deeply integrated Metawidget into their architecture: they had
eschewed both of Metawidget's built-in approaches to providing Ul metadata (either annotations on the
domain model code, or external XML files) in favour of plugging in their own implementation based on
localisation resource bundles; they had developed custom components and plugged in custom widget
builders to instantiate them; they had plugged in custom layouts to achieve the exact look they required.
Furthermore, the team instinctively understood the problem and were in agreeance with Metawidget's
approach to solving it, such as the feeling that statically generated code was impractical. Finally, they
experienced tangible benefits to the integration, including: freeing up junior programmers rather than having

them “dedicated to fixing those silly problems”; “visual and functional consistency”; even that a “category of

bug has simply disappeared”.

Despite this positive outcome, there were still further areas to be addressed. Some were straightforward
enhancements “more powerful layouts ready”’ but others were more intractable. In particular, being able to
refer to generated widgets in cases where the developer doesn't know their name in advance was a “problem

not only for Metawidget... [but] it would be nice to either solve this or offer a solution for that™’’.

9 This reflection, and others like it, led to the introduction of layout decorators.

10 This reflection, and others like it, led to the introduction of widget processors.

8. Conclusion

This white paper has considered a variety of adoption studies across different domains and organisations.
Each study has been followed by a period of reflection, which attempted to objectively assess strengths and
weaknesses of Metawidget and identify areas for improvement. It is hoped that by maintaining close
collaboration with developers through studies such as this, Metawidget can continue to improve and fulfil its

goal of becoming a general purpose automatic Ul generator.

	1. Introduction
	2. Adoption Study 1
	2.1. Synopsis
	2.2. Reflection

	3. Adoption Study 2
	3.1. Synopsis
	3.2. Reflection

	4. Adoption Study 3
	4.1. Synopsis
	4.2. Reflection

	5. Adoption Study 4
	5.1. Synopsis
	5.2. Reflection

	6. Adoption Study 5
	6.1. Synopsis
	6.2. Reflection

	7. Adoption Study 6
	7.1. Synopsis
	7.2. Reflection

	8. Conclusion

