
Metawidget White Paper

Duplication in User Interfaces

Richard Kennard

November 2010

http://metawidget.org

1. Introduction

This white paper examines the issue of duplication in User Interfaces (UIs). It investigates whether 'UI

duplication' (that is, restating information between the UI and the business layer) is considered a problem by

software developers: do they see duplication as a prevalent and detrimental source of errors, or does it

provide an advantageous level of flexibility? To answer this, we conducted 6 interviews with senior software

developers chosen from different segments of industry - including finance, medical and middleware - across

the UK, the US and Australia.

http://metawidget.org/

We chose a standardised, open-ended format for the interview (Valenzuela & Shrivastava 2002). This

approach involves asking the same standardised set of questions to each interviewee, but the set is

necessarily short because each question is framed broadly so as to allow the candidates room to talk openly

about their experiences. Standardised, open-ended interviews allow accurate comparison and analysis of

results, whilst avoiding leading the interviewee and therefore minimising bias. To analyse the results, we

employed a simplified version of Grounded Theory (Dick 2005). This theory involves coding, comparing

and sorting categories that emerge from the interview sessions. Of principal interest to this interview was the

category of duplication. Sub-categories included defects caused by duplication and the prevalence of

duplication. The following sections discuss each of these categories in turn.

2. Duplication

We began each interview by informing the developer we wanted to talk about the mechanics, not the

aesthetics, of developing a UI and its relation to the rest of an application. We asked each developer to

describe the process they would go through to add a Date of Birth field to an existing Person object in their

current software system, including both the back-end and front-end. This initial question was deliberately

phrased to be as open-ended as possible. Specifically, it avoided the bias of mentioning duplication. However

because we didn't explicitly prompt duplication, it was important to have each developer talk not just about

the UI but all steps of the process, from back-end to front-end. In this way, the duplication would become

apparent of its own accord. We phrased the question around updating an existing domain object, rather than a

new one. We did this in order to expose the weaknesses of static code generation tools, but again because we

didn't explicitly refer to static code generation we didn't feel this biased the responses. Finally, we chose a

date field in order to expose issues around data conversion errors between layers, which is symptomatic of

duplication.

All the developers gave similar answers for the process. One enumerated “first off we would add [the Date of

Birth field] to the database, in the table. We'd then add it to the stored procedures going up. Add it into the

Data Access Layer for the purposes of getting it out of the recordset. And then you'd add the property into the

business level, the business layer. And then, on the UI, on the front-end, we'd have to add the field in the

HTML”. Another developer said “I would go to the persistence level, I'd work out how that field should be

modelled in the problem domain. For date of birth, you'd have a date column. I'd look at the Person class,

work out its relationship with the Person schema. Work out its name, what its type would be, date or

datetime depending on the database. Then I'd work out how I should change the Person class – there'd

probably just be a getter and setter – and then I'd tie it back to the persistence layer, map it back to the table.

For validation constraints, yeah, this is always a problem, you need to validate it both in the UI and at the

persistence layer if that's a business rule, so it's always a problem. In terms of the UI, I'd go and find the bit

of UI code and work out the position where this field should be added”.

It was noted those developers using newer technologies had considerably fewer steps. One said “we would

obviously add that field to the actual business object that [JPA] maps to the database, that's already there.

And then any validation constraints that are around that – we use Hibernate Validator (Hibernate Validator

2008) so we'd put the validation constraints on the entity, we don't have to do anything more for validation

other than that, and all that's left now is dropping the field on to the UI, and that should be it really. Using the

IDE we have we'd drag and drop UI components, then we'd have to apply some kind of formatting as well,

some formatting to the underlying XHTML”. However we observed this sub-category (Dick 2005) of fewer

steps was generally from the domain objects 'down' the stack through to the persistence layer. It removed the

manual coding of schemas, stored procedures and recordsets. But it did not reduce steps 'up' to the UI layer.

We then summarised the steps back to the developer and asked whether they thought any steps were

deficient. Not all the developers were immediately aware of any problem. This is understandable for such an

entrenched issue: some interviewees simply don't know any different. One said “what we have now is pretty

good, certainly compared to Java Server Pages (JSP) or something like that. Two steps to add a field [one for

back-end, one for front-end] is pretty good. The framework handles quite a lot and we can develop much

faster than we normally do”. For those developers we used a further probe question (Valenzuela &

Shrivastava 2002), which specifically raised awareness of restating information: we asked whether any steps

seemed redundant, or contained duplicated information from previous steps. Such a question has inherent

bias, so it was not asked unless the developer failed to identify duplication naturally.

Following the probe question, all interviewees converged on recognising duplication amongst the steps. “The

problem definitely exists. It's more from the business layer forward to the screen is the biggest problem

because there are things out there like Hibernate (Hibernate 2009) which do from, sort of, business layer

down”. Another echoed this sentiment “the drudgery at the moment is adding the UI code, and adding the

validation and giving that feedback. That's really quite unpleasant. It's the most complex of all the steps,

actually, depending on the magnitude of the change. Given a very simple change, just adding a single field,

the bulk of the work, the bulk of the drudgery, in the coding is at the UI level. Being able to more concisely

express the relationship between the UI and the model and the change I want to make in one place, or at most

two places, in a very concise fashion would help”. Another warned “it's a fairly established software

engineering principle that the more you have to repeat something the higher the error is, the higher the

chances there's going to be an error in the code”.

3. Defects

Following on from this, we asked each developer whether they had ever encountered defects that were a

result of this recognised deficiency in their process. All of the interviewees responded that such defects were

common. “Definitely. There's always a chance that someone's going to get a bug somewhere along the line,

especially with Date of Birth – as it goes down the date gets mixed up because someone's used the incorrect

data type. With some of our junior developers we have here that's quite a common thing where they get a bit

muddled up… it's definitely an issue that should be far simpler”. Another agreed “All the time. That would

be me overlooking various aspects of the user feedback loop, in the validation, me forgetting to persist

various fields that I've added, so the validation happens but then it never gets persisted, so having to tie the

new field to the model, with validation, in multiple places, gives a number of points where I could fail to do

that”. Another said, of reviewing other developer's code, “a large percentage of mistakes were always they'd

copy and pasted [another field] and they'd changed that [declaration], and that one, and that one – but not

that one. So it creates a higher chance of there being a minor error”.

Several developers echoed this difficulty of identifying duplication related defects, because they generally

evade static checking and projects must rely on runtime testing to detect them. One financial software

developer explained “we've got a BigDecimal (Gosling 2005), and [the back-end has] set the scale to 8 but

the UI puts through 10, it [gets silently rounded and] passes all the way through. That becomes a real issue

because it's really hard to find. That's caused us huge problems before”. Another agreed “it's the biggest

problem I personally face. These sorts of errors. You're updating, say, you change the type of a field and you

try updating it with, say, a datetime object but you've actually now changed it to an integer field, you

don't realise until you actually start testing the application, or if you miss it in testing and send it out to

customers, you don't realise that there's a problem until you get the bug reports – not ideal”.

One developer described how, because duplication is generally not understood by refactoring tools, it works

against his preferred methodology of aggressive refactoring: “if you change a field name, and I do like to

change field names – I don't know why – so I'll decide after a year of using the program 'what's that field

name doing there?' I did it the other day: I've got a stock control module in the program and there's [a field]

called stock_reorder_level_reminder and I thought 'what a stupid name for a field', so I just changed

it to reorder_level because that's much easier. Now, generally changing that could have massive

implications couldn't it? You could change that and it could break the application in several parts”.

4. Prevalence

Finally, we asked each developer whether the themes explored in the interview were commonplace across all

software systems they had developed. One said “I've built a number of UIs over the course of my career,

some of them have been desktop applications, some of them have been Web applications, and I think this is a

general problem. For desktop applications it's hard but it's relatively easy. For Web I think it becomes a lot

more difficult because the technologies involved are a lot more fiddly, there are a lot more moving parts in

Web application UIs. But yes I think it's a general problem.”. Another said “quite honestly laying out UI

forms is time consuming, it's fairly standard how a UI is – it shouldn't be a problem to say, okay, you have

these things you probably want to interface in a particular way, here's what we suggest – we being the

computer – you've got a datetime here, here's the calendar control we suggest. Oh you don't want a

calendar, you want to use a text box, go for it. Something along those lines would definitely detract from the

tedium of putting together the UI, which is an important step and everything but is a really repetitive process.

If it's a varchar in the database, it's going to manifest as some form of a text box on the form. If I've got a

foreign key in my database, it's going to manifest as some form of list box, dropdown, radio button, check

box. It's not a huge leap”. One developer summarised it as “every developer who writes anything more than a

Hello World application will have this problem. Most developers who strive to make their work better, who

aren't lazy, do sense this problem, do encounter this problem on a daily basis as a constant friction in their

daily work”.

We observed a sub-category (Dick 2005) that this friction had driven several developers to fashion their own

ad hoc solutions by combining existing tools. “For a brand new screen we're currently using CodeSmith

(CodeSmith 2009), so if you design the database table you can hit generate and it'll go through and generate

everything right up to the screen”. However because of subsequent editing of the generated code, they found

CodeSmith to be of limited use outside of new screens: “if you could do the same thing where you could add

a new field to the database and it generated and added it into the [existing] code for you as it goes up that'd

be excellent”. Other solutions had similar shortcomings. Microsoft LinQ (LinQ 2009) helped with the

persistence layer, but “if I go in and create a field, LinQ creates a nullable version of that field, where the

[UI] control I'm binding it to is expecting a non-nullable version. That's caused a number of problems. That's

come up a number of times and you've really got to kind of juggle to make it work right. Keep in mind when

that could happen and keep track of the potential for it to happen”. Asked why they had invested the

considerable resources to fashion their own solutions: “I do genuinely believe that kind of thing makes the

development cycle better in the long run. It makes things much cleaner, there's less coding to go on. If I were

to have to write, well, in my application the basic objects I have, I have patients, contacts, appointments,

items, invoice, payments, refunds, credits and then a load of secondary objects like appointment status',

patient categories, all of these are objects. If I had to code a separate form for each one it's just tedious.

Interface work is not that much fun. It's quite tedious, dropping controls on a form, lining them up with the

other controls and fiddling around for ages”. Another developer echoed this sentiment saying, if such tedium

could be reduced, “you'd have more time for the actual problem solving: defining, clarifying, implementing

the problem rather than the mechanics of the 'auto pilot' of gotta code up this method, gotta code this, gotta

code that. Give you more time to concentrate on the more energy-requiring things rather than the

monotonous reproducing of stuff. Because, I mean, despite the fact they tell everyone not to, normally you

end up copying and pasting things”.

5. Conclusion

The results of our interviews suggested UI duplication was indeed a prevalent and serious problem in

software development. We observed developers across industry segments and across software platforms, and

saw a common theme of duplication. We also observed common themes of defects caused by duplication,

how newer technologies only addressed duplication 'down' the stack, a tendency of developers to fashion ad

hoc solutions, and a common desire for duplication to be addressed.

As further validation of these interview results, we conducted a self-administered survey. Self-administered

surveys can quickly reach more candidates than interviews, but carry risks of ambiguity and ultimately

invalidity because of their lack of an administrator. We used the constructs obtained from our interviews to

operationalise a questionnaire. For example, whereas it was sufficient in the structured, open-ended

interviews to ask “describe the process you would go through to add a Date of Birth field”, this question

would be too ambiguous in a self-administered survey to return valid data. Instead, the principal category of

'duplication' needed to be decomposed into a number of unambiguous attributes, such as “when you add a

new field to your back-end, do you also have to drag/drop a label in your UI builder?” and “do you also have

to drag/drop a widget?”.

The results from the self-administered survey (summarised on the following two pages) correlated well with

the results from our interviews. The majority of respondents were experiencing symptoms of UI duplication.

This provided further evidence of the prevalence and severity of UI duplication in software development.

With strong evidence to support us, we then set out to address this problem. We worked closely with

developers from both industry and the research community, and derived a general purpose approach to

eliminating duplication and reducing UI defects. The result is our Open Source project, Metawidget. Read

more on http://metawidget.org.

In your app, if you were to add a new field to the existing back-end (e.g. by specifying its name/type,

maximum length, whether it is nullable etc.) you would also need to:

6. References

CodeSmith. 2009. http://codesmithtools.com

Dick, B. 2005, 'Grounded theory: a thumbnail sketch',

http://www.scu.edu.au/schools/gcm/ar/arp/grounded.html

Gosling, J. 2005, The Java Language Specification, Addison-Wesley.

Hibernate. 2008. http://www.hibernate.org

Kennard, R., Edmonds, E. & Leaney, J. 2009, Separation Anxiety: stresses of developing a modern

day Separable User Interface. 2nd International Conference on Human System Interaction.

Kennard, R. & Steele, R. 2008, Application of Software Mining to Automatic User Interface

Generation. 7th International Conference on Software Methodologies, Tools and Techniques.

LinQ 2009. http://msdn.microsoft.com/en-us/vcsharp/aa904594.aspx

Valenzuela, D. & Shrivastava, P. 2002, 'Interview as a Method for Qualitative Research',

http://www.public.asu.edu/~kroel/www500/Interview%20Fri.pdf

http://www.public.asu.edu/~kroel/www500/Interview%20Fri.pdf
http://msdn.microsoft.com/en-us/vcsharp/aa904594.aspx
http://www.hibernate.org/
http://www.scu.edu.au/schools/gcm/ar/arp/grounded.html
http://codesmithtools.com/

	1. Introduction
	2. Duplication
	3. Defects
	4. Prevalence
	5. Conclusion
	6. References

