Metawidget White Paper

Case Study: Telefonica Health Portal

Richard Kennard
July 2011

http://metawidget.org

1. Introduction

This white paper presents a case study of using Metawidget to provide automatic Ul generation for the
Telefonica Health Portal system. The Health Portal is a Web-based application designed around a Service
Oriented Architecture and built using Google Web Toolkit. It serves the Spanish National Health System and
is deployed to some 3,000 hospitals and health clinics across Spain. The integration of Metawidget allowed
Telefonica to reduce development and ongoing maintenance costs. It further allowed the Health Portal to

offer a level of flexibility and functionality not possible in previous products.

http://metawidget.org/

2. Organisation and Product Overview

Telefonica (LSE: TDE.L) is one of the largest fixed-line and mobile telecommunications companies in the
world. It operates globally across Europe and Latin America with headquarters in Madrid, Spain (figure 1).
Telefonica was founded in 1924, and was originally government owned until being privatised in 1997. Since

then it has grown to over 260,000 employees with an annual revenue in excess of 60 billion Euros.

Figure 1: Telefonica headquarters in Madrid, Spain

The company was looking to develop a product for the Spanish National Health System (NHS). The Spanish
NHS is similar to that found in many European countries. It consists of a network of health clinics and
hospitals across different states and territories. Each centre employs multiple healthcare workers with an
array of specialities including General Practitioners (GP), paediatricians and physiotherapists. They are

funded through both public, government healthcare and private healthcare insurers.

The Telefonica Health Portal was to be an online platform providing a range of services to health clinics. The
Health Portal's functionality would include administering a clinic (see figure 2) and scheduling physicians
(see figure 3). Most relevant to this case study, the Health Portal could also serve as an intermediary between
clinics and healthcare insurers. Such an intermediary would provide three key benefits compared to existing
manual processes. First, it would provide interactivity: if additional documentation or authorisation codes
were required during submission of an insurance claim, the insurer could request them at the time the claim
was being lodged. Second, it would provide immediacy: after the claim was lodged, the Health Portal would
report back a status such as approved, rejected or pending validation. Finally, it would improve processing
times: claims could be lodged and payments made more quickly, and clinics could see real-time reports of

settled payments against their accounts as they approached month end.

Salud,

tgestiona

/ﬁ Agenca Facturacion

Liguidaciones

Tienes un ADSL p:
con la calidad de Telefénica

S desea leer | tarjeta del
asegurado pulse el hotdn

Leer tarjeta

jun 2009 N

L MM J v 5 D
4 5 & 7
1112 13 14

12 168 17 168 18 20 21

22 23 24 25 26 27 28

29 30

Clinica

Cansulta del Dr. P A =

Departamento

Cansulta del Dr. PERALTA
ASTUDILLD

Doctor
JULID

Calendario
Consulta del Dr. PERALTA,
ASTUDILLD

Anterion

§:00

10:00

11:00

12:00

13:00

i}
10
20
30
40
50
00
10
20
30
40
50
o0
10
20
an
40
50
o0
10
20
an
40
50
00
10
20
30
40
50
00
10

Para tenerlo todo bajo control

Impresion documentos

Tipo docL

HIF
MNombre
Dawvidd
Teléfono:
1231231
Tipo de u

Médico

Consulta

Co

Mombre:

Seleccione el color de fando de [a cita

Formato de ventana de a3 agenda

Consulta del Dr. PERALTA ASTUDILLO

Periodos avisualizar

@ Mafiana i Tatde
O Dia completo

Hora inicio mafiana | g

Hora fin mafiana |15

Hora inicin tarde |5

Hora fin tarde | 25

Duracién media de las citas (en mimutos)

am 10m

0

15m 20m 25m 30m asm 40m 45m

Permitir citas por internet
El paciente selecciona la hora de la cita

COEECOO

Tipos y duracién de las citas

Primera visita 20
Consulta 10
Revisidn 10

Aceptar | Cancelar

Figure 2: Health Portal administration

024062009

Siguiente | How

Mafiana - mar 02/jun

0o
10
20
16:00
ao
40
50
0o
10
20
17:00
ao
40
50
afi]
10
20
18:00
an
40
g0
afi]
10
20
19:00
a0
40
g0
0o
10
20
20:00
3o
40
50
0o
10

Figure 3: Health Portal scheduler

S0m

35m - G0m

El sisterna ervia recordatorios via SMS a los pacientes citados

Dia
Tarde - mar 02/un

Semana

Mes

This description of the Health Portal, simplified for the purposes of this case study, is depicted visually in
figure 4.

Lodge claim e <<include>>

Administer
clinic

Schedule physicians

View claim
reports

Request additional
documentation

Request authorisation
code

<<include>=>

Update claim
status

Clinic

Insurer

Figure 4: Simplified UML diagram of Health Portal

However, business analysis showed that the data needed in order to lodge a claim varied for each private
healthcare insurer. Within each insurer, it further varied by speciality (GP, paediatrician, etc.). And within
each speciality, it further varied by type of activity (initial consultation, follow-up visit etc.). The Health
Portal would need one insurance claim form per insurer, per speciality and per activity. Worse, as new
insurance companies signed on to the service, new forms would need to be developed. This ongoing
development cost would threaten the economic viability of the Health Portal. Instead, Telefonica decided
they needed a way to dynamically define portions of each insurance screen. Indeed, they wanted the insurer

to be able to dynamically define their forms themselves. This was where Metawidget came in.

3. Integration of Metawidget

This case study interviewed members of the project team, including the project manager.

The discussion opened around the Health Portal's requirement to dynamically define portions of each
insurance form. The project manager explained: “We had a need to dynamically create input data screens, we
searched the different alternatives available in the market, and the one that fitted best was Metawidget”. He
explained they considered several alternatives but “after an exhaustive analysis of available tools we decided

that the tool that best fitted our needs was Metawidget”.

The Health Portal needed to provide a range of functionality. This required a rich Ul with several different
types of screens and aesthetics. There was no requirement to automatically generate the entire Ul Indeed for
many screens doing so would have been impractical. For example figures 2 and 3 show screens that were
manually tuned for usability. It would not have suited the project to impose a generic, stylized CRUD UI (or
OOUI) across every screen. The team only wanted to use automatic generation for selected portions of their
application. In addition, they had already chosen their preferred Ul framework and tools (GWT 2011) and
developed several screens using traditional techniques. It would not have suited them if the UI generator had
tried to dictate their technology choices. Together, these observations validated Metawidget's approach to

defining 'useful bounds' around UI generation (Kennard & Steele 2008).

The team wanted the dynamic portions of their insurance claim forms to be definable by the insurer. They
built a Ul to allow the insurer to specify their particular fields, including the name, data type and other
metadata (such as whether they were optional fields). The team then needed these fields to be reflected on
the clinic's screens. The application was built around a rich, Web-based Ul making extensive use of
JavaScript and client-side AJAX calls to Web services. The design was that, upon initiating an insurance
claim, the Ul would first invoke a Web service and supply the id of the insurer. The Web service would
respond with an XML definition of the insurer's form requirements, including portions that described the

dynamic fields. A typical response would be:

<?xml version="1.0" encoding="UTF-8"?2>
<mensaje co_op="R00210">
<R00210>
<cif-aseguradora>00000000X</cif-aseguradora>
<co-facturador>00000000X</co-facturador>
<respuesta></respuesta>
<timestamp>0000000000000000</timestamp>
<agrupaciones>
<agrupacion codigo="0001">
<nombre>AGRUPACION</nombre>

<especialidades>

<especialidad codigo="01">
<nombre>MEDICINA GENERAL</nombre>
<actos>
<acto codigo="0001">
<nombre>CONSULTA</nombre>
<campos-variables>
...GP initial consult dynamic fields...
</campos-variables>
</acto>
<acto codigo="0002">
<nombre>REVISION</nombre>
<campos-variables>
...GP follow-up visit dynamic fields...
</campos-variables>
</acto>
</actos>
</especialidad>
<especialidad codigo="02">
<nombre>PEDIATRIA</nombre>
<actos>
<acto codigo="0001">
<nombre>CONSULTA</nombre>
<campos-variables>
...pediatrician initial consult dynamic fields...
</campos-variables>
</acto>
<acto codigo="0002">
<nombre>REVISION</nombre>
<campos-variables>
...pediatrician follow-up visit dynamic fields...
</campos-variables>
</acto>
</actos>
</especialidad>
...more especialidad...
</especialidades>
</agrupacion>
...more agrupacion...
</agrupaciones>

</R00210>

</mensaje>

The UI generator would extract those portions of the XML response related to dynamic fields and use them
to generate its Ul This requirement validated Metawidget's approach to performing generation at runtime. It

is a scenario where a system's input is itself source code — adding new functionality and screens to an

application. Runtime analysis is needed to accommodate such a scenario.

Because the fields were to be defined declaratively, visual IDE tools such as NetBeans Matisse (2011) were
not applicable. And because the screens must be generated dynamically at runtime, rather than statically at
development time, model-based tools such as JSF (2011) were not suitable either. What was needed was a
runtime generator that could source its metadata from arbitrary sources, in this case embedded in an XML
response from a web service. As the project manager commented: “The main feature [of Metawidget] for us
was the possibility to dynamically, based on rules stored in our database [and exposed via a Web service],
create input screens based on user selections”. The team were able to plug in a custom inspector to suit their
needs. But they did not require multiple inspectors, as the web service provided a single source of metadata,

so they did not require collation. This validated Metawidget's approach to making collation pluggable via

CompositelInspector.

Once the Ul had been generated and the data captured, it was to be written back into the same XML structure
and returned via a second web service. This was an interesting design decision. Its rationale was that there
would then be a single piece of XML containing both field names, data types and values. This XML could be
stored directly in the database. Screens using it could then be recreated and redisplayed at a later time, even
if the insurer's original XML definition changed. For example if, having used the Health Portal for a few
months, the insurer decided they needed to alter the fields on their form, the previous several months worth
of claims and associated invoices could still be rendered in their original format. This was an unusual
requirement because it meant the Ul data was not to be stored back to a domain object. Indeed, there was no
domain object to store back to. Rather, data values had to be read and written into a fragment of XML. The
team were able to plug in a custom widget processor to achieve this, validating Metawidget's approach to

pluggable processing.

Finally, the presentation of the dynamic portions was required to be different for different screens, so as to
blend with the non-dynamic portions. For the 'lodge individual claim' and 'lodge multiple claims' screens a
three column layout was required, as shown in figures 5 and 6. The bottom of each dialog box is generated
by Metawidget. For the invoice screen a single column layout was preferred, as shown in figure 7. The centre
of the dialog box is generated by Metawidget. These differences in layout validated Metawidget's approach
to pluggable layouts.

Having detailed the organisation and product, and understood Metawidget's integration within it, the case

study turned to validating Metawidget's effectiveness.

. Salud
tgestiona

”.‘ Agenda Facturacion

Liquidaciones

Y... muy pronto de otras companias

Enviar transaccién

. r?v“* .

Eneel teléfo
iy 2
902 10

Estamos para

ayudarte

Ny

Impresion documentos Administracion

Paciente: USUARIO DE PRUEBAS
N°Tarjeta: 00009999910005

Ayuda Usuario Conectado: Beatriz Del Palacio Garcia-Calderon Salir

Facturacion Aseguradoras

Asequradora: ANTARES

Facturar como:

Doctor que presta el servicio:

| DC Alergologia [=] [Marta Isabel Rodriguez Cabreros =l
Especialidad: ALERGOLOGIA
Tipo de Acto realizado: { CONSULTAS ix]

Accidente:

Serie del
Volante de
Prescripcion:

Fecha de_ i 18/07/2011 Tipo de.)
ocurrencia: Urgencia:
Namero del Hiimeroida
Volante de

Prescripcion:

Aceplar | Cancelar

Autorizacion:

Figure 5: Metawidget is used while lodging individual claims

Salud

tgestiona

Y Agenda Facturacion

(Necesita Ayuda?

Solo tienes
que llamar

Practica el

control total de tu actividad

Puesto Informatico Sanitario

E 2

Usuario Conectado:

mpresién
Envio miiltiple de taloncillos
A Taloncillos enviados o en curso
00009999910005 USUARIO DE PRUEBAS
Facturado como: Doctor que presta el servicio:
| sede 121 [+] [Usuario 125 Apeliida 1 Apellido 2 [+]
Especialidad: | MEDICINA INTERNA [=]
=
Escribaactoa buscar |]
[Acto médico:
n .
E REVISION
=
2
. Fechade " Tipode
Accidente: - ocurrencia: 02/03/2011 Urgencia: -
D Enviar
Serie del Humero del Nimero de
Volante de Volante de rode)
V' prescripcion: Prescripcion: Autorizacion: Finalizar

i

Guardar ‘Cancelar

Clinica 107 (Usuario Administrador)

Figure 6: Metawidget is used while lodging multiple claims

Usuario 123 Apellido 1 Apellido 2 Salir

m

tgestiona

Sa/ud. Para tenerlo todo bajo control I

/h Agenda Facturacion Liguidaciones Administracion

Factura:

Internetizate 14,90 &/mes

tres primeros meses Facturar como:

Consulta del Dr. Dominguez Martinez | »

Sidesea leer |atarjeta del
azegurado pulze el batdn

Leerfarjzta
Saolicitud Email
Introduzca email

Acto Médico realizado: cuental @micorreon cnm| soncepto de ACIDO VALPROICO LIBRE

Aceptar | Cancelar

Facturar a:

Fecha: 02/06/2009 .
N° Factura: 163/2009 ’
Importe: BE.85)

'3: NOTA: Factura exenta de WA segiin Ley 37/1992 de 28 de Dic. del IVA, Art. 20.3°

Aceptar Cancelar

Figure 7: Metawidget is used while printing invoices
4. Validation of Metawidget
This case study validated Metawidget against four themes.

The themes were derived from an overarching goal (GQM — Basili 1992) of Metawidget being a general
purpose solution accepted by developers and applicable to industry. 'Acceptance' was considered a multi-
faceted concern. First, a solution must have an obviousness to it: it must be approachable and straightforward
to conceptualise, with a learning curve no steeper than necessary. Second, a solution should be convenient to
use: it's APl must be powerful but not cumbersome, and be more productive than developing the same
application without it. Third, a solution must be adaptable: it must work well within a broad range of
architectures, both front-end UI frameworks and back-end technologies. Finally, a solution must be
performant: imposing reasonable processor time, bandwidth and memory constraints that do not outweigh its

benefits.

Such themes can be tested either quantitatively or qualitatively. There is appeal in the former, as metrics such
as ‘number of lines of Ul code saved', 'hours required to update the UI following changes to the domain
model' or 'number of API methods necessary to implement a UI' have an impersonal, impartial character to
them that conveys a sense of neutrality. However such thinking misses a critical point of Metawidget: its
success is tied to the personal, to the partial. If Metawidget saves developers 25% of their Ul code but they

find it awkward and laborious to use, it will not achieve developer acceptance in significant numbers. If

Metawidget can do more with fewer API calls but those calls are obtuse and inflexible, its long-term
adoption in a project will be unlikely to survive handover from one developer to the next. If Metawidget can
automatically update a Ul in seconds, but that UI does not appear the way the designer intended, it will not

pass usability tests.

Rather, a more reliable measure arises from qualitative metrics. Metrics such as developer thoughts,
preferences, and satisfaction. It is possible to give these an impersonal, quantitative flavour using techniques
such as Likert scales (1932), but again doing so risks losing a critical essence. Given the fragile, elusive
nature of a quality such as 'acceptance', it seemed prudent this case study remain qualitative. The next

sections discuss Metawidget in the context of the four themes.

4.1. Obviousness

Prior to encountering Metawidget did you have any preconceptions regarding Ul generation? If so, how did
Metawidget fit with those preconceptions? If not, could you identify with the gap Metawidget defines? One
team member recalled: “In our case [it was] more than preconceptions. We had actual requirements.
Requirements in concrete cases for generating Ul, i.e. we needed a technology compatible with GWT, it had
to work with XML, and it also had to be able to work dynamically”. The team already had a product
specification whose requirements included Ul generation, so they were very clear about the gap they needed

to fill.

The team member claborated: “The Health Portal acts like a broker between insurance companies and
clinics/hospitals. When data flows between those two parts (e.g. a clinic sends a bill to the insurance
company), certain parts are common to all the insurance companies (such as the structure of worker's
'profiles' and of the medical 'acts') and others are not (bill numbering can be different, some include
authorisation number etc.). We wanted the insurance companies to be able to define and provide (through
XML) themselves these variable data for the benefit of both parties”. The team understood this was not a
requirement they could fulfil using their existing technologies. It was an explicit requirement for UI
generation. This is unusual. It is distinct from a team who, say, were already using manual techniques to

construct their Uls and were looking for a way to automate their processes.

As you were getting started with Metawidget, did you find its parts arranged roughly where you expected to
find them? Were there any areas that stood out as being designed differently to you expected? If so, what
were they and what were you expecting? The team member reflected: “we really didn't have so much
expectation about that”. Nevertheless, they were comfortable with what they found. The project manager
confirmed: “The [Metawidget] concept makes sense, and it gives opportunities to create very flexible
applications, where the input screens are easy to adapt to the user needs”. Such input screens can be seen in

figures 5, 6 and 7, described previously.

4.2. Convenience

Having determined what you wanted Metawidget to do, how difficult did you find getting Metawidget to do
it? One team member responded: “Let's say the difficulty was medium. There were some features we wanted
but which Metawidget did not have at that time, and that did require some customisation of the code”. For

these, the team were able to plug in their own inspectors and widget processors.

Were there scenarios where Metawidget demonstrated clear benefits over your usual techniques? The team
member validated: “More than clear benefits. With our requirements Metawidget was basically the only
option. Our usual techniques would not have done the job. The only other solution that came close to meet
our requirements was TICBO [a Customer Relationship Management tool] but in end it did not meet all of
them”. Metawidget met all requirements because “it was compatible with GWT, could work with XML, and
could work dynamically”. This was a validation of Metawidget's mixture of useful bounds and runtime

generation. They created a solution unlike any other available.

Were there scenarios where Metawidget was demonstrably worse than your usual techniques, or did not
represent a compelling advantage? If so, what would have helped tip the balance? The project manager
replied there were no demonstrably worse scenarios, but that “we think it would be nice to have conditional
fields, so that [a field's] behaviour would depend on the user selections from other fields”. Metawidget does
support pluggable third-party expression languages for implementing conditional fields for different
environments. However it did not cater for the particular combination of front-end and back-end this project
chose. Specifically, Metawidget had no solution for client-side, browser-based (i.e. ECMAScript) conditional
fields using GWT. More work was needed there, though there was good precedent for incorporating this kind

of technology based on the other platforms.

4.3. Adaptability

How did you find Metawidget initially fit with your existing architecture? Were there parts that 'just
worked'? The team member responded: “As [I said] before, the use of Metawidget was somewhat concrete
and, where we used it, it did meet our requirements and worked. [On top of that] the code was customised to
include features not yet present at the time”. There were two examples of such customisation. The first was a
custom inspector, CamposVariablesInspector. This was used to inspect fragments of the XML response
returned by the insurer Web service, as shown in figure 8. This was different to Metawidget's standard

inspectors, which generally inspected objects or whole XML configuration files.

Metawi i Campos\ariablesnspector I‘ Web service

asks to inspect

requests
insurer XML

retumns
insurer XML

> ___

_1__________!'__

extracts dynamic fields
from XML

¢ retuns inspection result

Metawidget CamposVariablesnspector I‘ Web service

Figure 8: Health Portal uses a custom inspector

The second piece of customisation was a custom widget processor, CamposVariablesBinding. This both
extracted data values from the XML fragment and wrote them into the generated widgets, and also read them
back from the generated widget and inserted them into the XML fragment, as shown in figure 9. Again this

was different to Metawidget's standard binding, which bound data values to domain objects.

Metawidget I | WidgetBuilder I‘ CamposvariablesBinding I
loop [for each widget, on load]
asks for widget %
Ld

4 retumns chosen widget

asks to process

extracts data value
Trom XML

writes data value
to widget

returns Tinal widget

F

loop [for each widget, on save]

asks to process

reads data value
from widget
inserts data value
into XML

retumns final widget

4
&

Metawidget I | WidgetBuilder I‘ Campos\VariablesBindi I

Figure 9: Health Portal uses a custom widget processor

Were there areas where you had to write your own plugins, and if so how did you find writing them? The
project manager explained: “Being able to incorporate Metawidget within an existing Ul was important. It's

fundamental for our project”. Similarly to integrate with their existing back-end: “It was important it

supported our back-end. Being able to plug-in our back-end inspectors gave us the flexibility needed, it is
impossible for Metawidget to support everyone's requirements”. The inverse of this statement is that it is
unrealistic to expect everyone to change their application to suit Metawidget's requirements. This ability to
integrate was so important, in fact, that the project manager summarised “It was critical Metawidget
supported both our front-end and back-end, otherwise we probably would not have even tried it [for the

Health Portal]”.

Were there areas where Metawidget couldn't be made to fit? The team member couldn't recall any: “No,

where we used Metawidget it did fit”.

4.4. Performance

How did your application compare, both in terms of speed and memory, before and after the introduction of
Metawidget? The team member replied: “In this case there was no before and after. No alternatives to
Metawidget were ever developed, it was included from the beginning”. However the team had encountered

no performance problems, having deployed the Health Portal to thousands of clinics across Spain.

Did you find the before and after reasonable in terms of the costs and benefits of Ul generation? The team
member opined: “As [I said] before, there were no alternatives developed. However, we consider the choice
reasonable in terms of cost and benefits; it was really the only option that met our requirements. If not, these
requirements would have had to be changed. That would have meant less flexibility to all the parties of the
project. Of course, another option would have been to develop some in-house solution similar to what
Metawidget does, but that was never really an option considering the costs and benefits”. This validated that
UI generation is conceptually a common problem (Kennard, Leaney & Edmonds 2009) that calls for a
general purpose solution rather than an in-house one. “[It] did not add any business specific value if we could

find a third-party solution that solved the same problem”.

5. Conclusion

In closing, I asked the project manager how he would sum up the team's experiences with Metawidget?
“Since we use [Metawidget] as a dynamic information capture tool, it gives us great flexibility towards
fulfilling customer requirements in record time. Even more of the information captured is almost as a black
box where our application does not apply any business rules, [letting] our customers [the insurers] be the
ones that define the business rules. Our application is a bridge between the user and our customer, and from
that point of view Metawidget fits our needs perfectly, since it allows us to offer the customer [insurer]| with
a tool for him to decide and customise, without our help, the information that needs to be captured from the

user [clinic]”.

This case study gathered responses that were pertinent to its qualitative metrics. In turn, these provided an
understanding of its four themes and validated its goal. The case study found industry developers who had
accepted, and successfully adopted, Metawidget for use in their application. At the time of writing, the
Telefonica Health Portal has been in production for several months and deployed to some 3,000 health

clinics across Spain. This presents strong validation of industry applicability and developer acceptance.

6. Resources

Health Portal: http://salud.telefonica.es

Metawidget: http://metawidget.org

Telefonica: http://telefonica.com

7. References

Basili, V. 1992, 'Software modeling and measurement: the Goal/Question/Metric paradigm'.

GWT 2011. http://code.google.com/webtoolkit

JSF 2011, http://www.jcp.org/en/jst/detail?id=314

Kennard, R., Edmonds, E. & Leaney, J. 2009, Separation Anxiety: stresses of developing a modern

day Separable User Interface. 2" International Conference on Human System Interaction.
Kennard, R. & Steele, R. 2008, Application of Software Mining to Automatic User Interface
Generation. 7th International Conference on Software Methodologies, Tools and Techniques.

Likert, R. A. 1932. 'A technique for the measurement of attitudes', Archives of Psychology, New York, No.
140.
NetBeans 2011, http://netbeans.org

http://netbeans.org/
http://www.jcp.org/en/jsr/detail?id=314
http://code.google.com/webtoolkit
http://telefonica.com/
http://metawidet.org/
http://salud.telefonica.es/

	1. Introduction
	2. Organisation and Product Overview
	3. Integration of Metawidget
	4. Validation of Metawidget
	4.1. Obviousness
	4.2. Convenience
	4.3. Adaptability
	4.4. Performance

	5. Conclusion
	6. Resources
	7. References

