
Metawidget White Paper

Case Study: Telefónica Health Portal

Richard Kennard

July 2011

http://metawidget.org

1. Introduction

This white paper presents a case study of using Metawidget to provide automatic UI generation for the  

Telefónica Health Portal system. The Health Portal is a Web-based application designed around a Service  

Oriented Architecture and built using Google Web Toolkit. It serves the Spanish National Health System and  

is deployed to some 3,000 hospitals and health clinics across Spain. The integration of Metawidget allowed 

Telefónica to reduce development and ongoing maintenance costs. It further allowed the Health Portal to 

offer a level of flexibility and functionality not possible in previous products.

http://metawidget.org/


2. Organisation and Product Overview

Telefónica (LSE: TDE.L) is one of the largest fixed-line and mobile telecommunications companies in the 

world. It operates globally across Europe and Latin America with headquarters in Madrid, Spain (figure 1). 

Telefónica was founded in 1924, and was originally government owned until being privatised in 1997. Since 

then it has grown to over 260,000 employees with an annual revenue in excess of 60 billion Euros.

Figure 1: Telefónica headquarters in Madrid, Spain

The company was looking to develop a product for the Spanish National Health System (NHS). The Spanish 

NHS is similar to that found in many European countries. It  consists of a network of health clinics and  

hospitals across different states and territories. Each centre employs multiple healthcare workers with an  

array of  specialities  including  General  Practitioners  (GP),  paediatricians  and  physiotherapists.  They are 

funded through both public, government healthcare and private healthcare insurers.

The Telefónica Health Portal was to be an online platform providing a range of services to health clinics. The 

Health Portal's functionality would include administering a clinic (see figure  2) and scheduling physicians 

(see figure 3). Most relevant to this case study, the Health Portal could also serve as an intermediary between 

clinics and healthcare insurers. Such an intermediary would provide three key benefits compared to existing  

manual processes. First, it would provide interactivity: if additional documentation or authorisation codes 

were required during submission of an insurance claim, the insurer could request them at the time the claim 

was being lodged. Second, it would provide immediacy: after the claim was lodged, the Health Portal would 

report back a status such as approved, rejected or pending validation. Finally, it would improve processing  

times: claims could be lodged and payments made more quickly, and clinics could see real-time reports of 

settled payments against their accounts as they approached month end.



Figure 2: Health Portal administration

Figure 3: Health Portal scheduler



This description of the Health Portal, simplified for the purposes of this case study, is depicted visually in 

figure 4.

Figure 4: Simplified UML diagram of Health Portal

However, business analysis showed that the data needed in order to lodge a claim varied for each private  

healthcare insurer. Within each insurer, it further varied by speciality (GP, paediatrician, etc.). And within  

each speciality, it further varied by type of activity (initial consultation, follow-up visit etc.). The Health 

Portal  would need one insurance claim form per insurer,  per speciality and per activity.  Worse,  as new  

insurance  companies  signed  on  to  the  service,  new forms  would  need  to  be  developed.  This  ongoing  

development cost would threaten the economic viability of the Health Portal. Instead, Telefónica decided  

they needed a way to dynamically define portions of each insurance screen. Indeed, they wanted the insurer  

to be able to dynamically define their forms themselves. This was where Metawidget came in.



3. Integration of Metawidget

This case study interviewed members of the project team, including the project manager.

The  discussion  opened  around  the  Health  Portal's  requirement  to  dynamically  define  portions  of  each 

insurance form. The project manager explained: “We had a need to dynamically create input data screens, we 

searched the different alternatives available in the market, and the one that fitted best was Metawidget”. He 

explained they considered several alternatives but “after an exhaustive analysis of available tools we decided 

that the tool that best fitted our needs was Metawidget”.

The Health Portal needed to provide a range of functionality. This required a rich UI with several different  

types of screens and aesthetics. There was no requirement to automatically generate the entire UI. Indeed for 

many screens doing so would have been impractical. For example figures  2 and 3 show screens that were 

manually tuned for usability. It would not have suited the project to impose a generic, stylized CRUD UI (or  

OOUI) across every screen. The team only wanted to use automatic generation for selected portions of their  

application. In addition, they had already chosen their preferred UI framework and tools (GWT 2011) and 

developed several screens using traditional techniques. It would not have suited them if the UI generator had  

tried to dictate their technology choices. Together, these observations validated Metawidget's approach to 

defining 'useful bounds' around UI generation (Kennard & Steele 2008).

The team wanted the dynamic portions of their insurance claim forms to be definable by the insurer. They 

built  a UI to allow the insurer to specify their particular fields, including the name, data type and other 

metadata (such as whether they were optional fields). The team then needed these fields to be reflected on  

the  clinic's  screens.  The  application  was  built  around  a  rich,  Web-based  UI  making  extensive  use  of  

JavaScript and client-side AJAX calls to Web services. The design was that, upon initiating an insurance 

claim, the UI would first invoke a Web service and supply the id of the insurer. The Web service would 

respond with an XML definition of the insurer's form requirements, including portions that described the 

dynamic fields. A typical response would be:

<?xml version="1.0" encoding="UTF-8"?>
<mensaje co_op="R00210">
   <R00210>
      <cif-aseguradora>00000000X</cif-aseguradora>
      <co-facturador>00000000X</co-facturador>
      <respuesta></respuesta>
      <timestamp>0000000000000000</timestamp>
      <agrupaciones>
         <agrupacion codigo="0001">
            <nombre>AGRUPACION</nombre>
            <especialidades>



               <especialidad codigo="01">
                  <nombre>MEDICINA GENERAL</nombre>
                  <actos>
                     <acto codigo="0001">
                        <nombre>CONSULTA</nombre>
                        <campos-variables>
                           ...GP initial consult dynamic fields...
                        </campos-variables>
                     </acto>
                     <acto codigo="0002">
                        <nombre>REVISION</nombre>
                        <campos-variables>
                           ...GP follow-up visit dynamic fields...
                        </campos-variables>
                     </acto>
                  </actos>
               </especialidad>
               <especialidad codigo="02">
                  <nombre>PEDIATRIA</nombre>
                  <actos>
                     <acto codigo="0001">
                        <nombre>CONSULTA</nombre>
                        <campos-variables>
                           ...pediatrician initial consult dynamic fields...
                        </campos-variables>
                     </acto>
                     <acto codigo="0002">
                        <nombre>REVISION</nombre>
                        <campos-variables>
                           ...pediatrician follow-up visit dynamic fields...
                        </campos-variables>
                     </acto>
                  </actos>
               </especialidad>
               ...more especialidad...
            </especialidades>
         </agrupacion>
         ...more agrupacion...
      </agrupaciones>
   </R00210>
</mensaje>

The UI generator would extract those portions of the XML response related to dynamic fields and use them 

to generate its UI. This requirement validated Metawidget's approach to performing generation at runtime. It  

is  a scenario where a system's  input  is  itself  source code – adding new functionality and screens to an 



application. Runtime analysis is needed to accommodate such a scenario.

Because the fields were to be defined declaratively, visual IDE tools such as NetBeans Matisse (2011) were  

not applicable. And because the screens must be generated dynamically at runtime, rather than statically at 

development time, model-based tools such as JSF (2011) were not suitable either. What was needed was a  

runtime generator that could source its metadata from arbitrary sources, in this case embedded in an XML 

response from a web service. As the project manager commented: “The main feature [of Metawidget] for us  

was the possibility to dynamically, based on rules stored in our database [and exposed via a Web service],  

create input screens based on user selections”. The team were able to plug in a custom inspector to suit their 

needs. But they did not require multiple inspectors, as the web service provided a single source of metadata, 

so they did not require collation. This validated Metawidget's approach to making collation pluggable via 
CompositeInspector.

Once the UI had been generated and the data captured, it was to be written back into the same XML structure 

and returned via a second web service. This was an interesting design decision. Its rationale was that there  

would then be a single piece of XML containing both field names, data types and values. This XML could be  

stored directly in the database. Screens using it could then be recreated and redisplayed at a later time, even  

if the insurer's original XML definition changed. For example if, having used the Health Portal for a few 

months, the insurer decided they needed to alter the fields on their form, the previous several months worth  

of  claims  and associated invoices  could still  be  rendered in  their  original  format.  This  was an unusual  

requirement because it meant the UI data was not to be stored back to a domain object. Indeed, there was no  

domain object to store back to. Rather, data values had to be read and written into a fragment of XML. The 

team were able to plug in a custom widget processor to achieve this, validating Metawidget's approach to  

pluggable processing.

Finally, the presentation of the dynamic portions was required to be different for different screens, so as to 

blend with the non-dynamic portions. For the 'lodge individual claim' and 'lodge multiple claims' screens a  

three column layout was required, as shown in figures 5 and 6. The bottom of each dialog box is generated 

by Metawidget. For the invoice screen a single column layout was preferred, as shown in figure 7. The centre 

of the dialog box is generated by Metawidget. These differences in layout validated Metawidget's approach 

to pluggable layouts.

Having detailed the organisation and product, and understood Metawidget's integration within it, the case 

study turned to validating Metawidget's effectiveness.



Figure 5: Metawidget is used while lodging individual claims

Figure 6: Metawidget is used while lodging multiple claims



Figure 7: Metawidget is used while printing invoices

4. Validation of Metawidget

This case study validated Metawidget against four themes.

The themes were derived from an overarching goal (GQM – Basili 1992) of Metawidget being a general 

purpose solution accepted by developers and applicable to industry. 'Acceptance' was considered a multi-

faceted concern. First, a solution must have an obviousness to it: it must be approachable and straightforward 

to conceptualise, with a learning curve no steeper than necessary. Second, a solution should be convenient to  

use:  it's  API must  be powerful  but  not  cumbersome, and be more productive than developing the same 

application without  it.  Third,  a  solution must  be adaptable:  it  must  work well  within a  broad range of  

architectures,  both  front-end  UI  frameworks  and  back-end  technologies.  Finally,  a  solution  must  be  

performant: imposing reasonable processor time, bandwidth and memory constraints that do not outweigh its 

benefits.

Such themes can be tested either quantitatively or qualitatively. There is appeal in the former, as metrics such  

as 'number of lines of UI code saved', 'hours required to update the UI following changes to the domain 

model' or 'number of API methods necessary to implement a UI'  have an impersonal, impartial character to  

them that conveys a sense of neutrality. However such thinking misses a critical point of Metawidget: its  

success is tied to the personal, to the partial. If Metawidget saves developers 25% of their UI code but they 

find it awkward and laborious to use, it will not achieve developer acceptance in significant numbers. If  



Metawidget  can  do  more  with  fewer  API  calls  but  those  calls  are  obtuse  and inflexible,  its  long-term 

adoption in a project will be unlikely to survive handover from one developer to the next. If Metawidget can 

automatically update a UI in seconds, but that UI does not appear the way the designer intended, it will not  

pass usability tests.

Rather,  a  more  reliable  measure  arises  from  qualitative  metrics.  Metrics  such  as  developer  thoughts, 

preferences, and satisfaction. It is possible to give these an impersonal, quantitative flavour using techniques 

such as Likert scales (1932), but again doing so risks losing a critical essence. Given the fragile, elusive  

nature  of a quality such as 'acceptance',  it  seemed prudent  this  case study remain qualitative.  The next 

sections discuss Metawidget in the context of the four themes.

4.1. Obviousness

Prior to encountering Metawidget did you have any preconceptions regarding UI generation? If so, how did  

Metawidget fit with those preconceptions? If not, could you identify with the gap Metawidget defines? One 

team member  recalled:  “In  our  case  [it  was]  more  than  preconceptions.  We  had  actual  requirements.  

Requirements in concrete cases for generating UI, i.e. we needed a technology compatible with GWT, it had  

to work with XML, and it  also had to  be able  to  work dynamically”.  The team already had a  product  

specification whose requirements included UI generation, so they were very clear about the gap they needed 

to fill.

The  team member  elaborated:  “The  Health  Portal  acts  like  a  broker  between insurance  companies  and 

clinics/hospitals.  When  data  flows  between those  two  parts  (e.g.  a  clinic  sends  a  bill  to  the  insurance  

company),  certain  parts  are  common to  all  the  insurance  companies  (such  as  the  structure  of  worker's 

'profiles'  and  of  the  medical  'acts')  and  others  are  not  (bill  numbering  can  be  different,  some  include 

authorisation number etc.). We wanted the insurance companies to be able to define and provide (through 

XML) themselves these variable data for the benefit of both parties”. The team understood this was not a  

requirement  they  could  fulfil  using  their  existing  technologies.  It  was  an  explicit  requirement  for  UI 

generation. This is unusual. It is distinct from a team who, say, were already using manual techniques to  

construct their UIs and were looking for a way to automate their processes.

As you were getting started with Metawidget, did you find its parts arranged roughly where you expected to  

find them? Were there any areas that stood out as being designed differently to you expected? If so, what  

were  they  and what  were you expecting?  The team member  reflected:  “we really didn't  have so much 

expectation about that”. Nevertheless, they were comfortable with what they found. The project manager 

confirmed:  “The  [Metawidget]  concept  makes  sense,  and  it  gives  opportunities  to  create  very  flexible 

applications, where the input screens are easy to adapt to the user needs”. Such input screens can be seen in  

figures 5, 6 and 7, described previously.



4.2. Convenience

Having determined what you wanted Metawidget to do, how difficult did you find getting Metawidget to do  

it? One team member responded: “Let's say the difficulty was medium. There were some features we wanted  

but which Metawidget did not have at that time, and that did require some customisation of the code”. For  

these, the team were able to plug in their own inspectors and widget processors.

Were there scenarios where Metawidget demonstrated clear benefits over your usual techniques? The team 

member validated:  “More than clear benefits.  With our requirements Metawidget  was basically the only 

option. Our usual techniques would not have done the job. The only other solution that came close to meet  

our requirements was TICBO [a Customer Relationship Management tool] but in end it did not meet all of 

them”. Metawidget met all requirements because “it was compatible with GWT, could work with XML, and 

could work dynamically”.  This was a validation of Metawidget's  mixture of useful  bounds and runtime 

generation. They created a solution unlike any other available.

Were there scenarios where Metawidget was demonstrably worse than your usual techniques, or did not  

represent a compelling advantage? If  so, what would have helped tip the balance?  The project manager 

replied there were no demonstrably worse scenarios, but that “we think it would be nice to have conditional  

fields, so that [a field's] behaviour would depend on the user selections from other fields”. Metawidget does 

support  pluggable  third-party  expression  languages  for  implementing  conditional  fields  for  different 

environments. However it did not cater for the particular combination of front-end and back-end this project  

chose. Specifically, Metawidget had no solution for client-side, browser-based (i.e. ECMAScript) conditional 

fields using GWT. More work was needed there, though there was good precedent for incorporating this kind 

of technology based on the other platforms.

4.3. Adaptability

How did  you  find  Metawidget  initially  fit  with  your  existing  architecture?  Were  there  parts  that  'just  

worked'? The team member responded: “As [I said] before, the use of Metawidget was somewhat concrete 

and, where we used it, it did meet our requirements and worked. [On top of that] the code was customised to 

include features not yet present at the time”. There were two examples of such customisation. The first was a  

custom inspector, CamposVariablesInspector. This was used to inspect fragments of the XML response 

returned by the insurer Web service,  as shown in figure  8.  This was different  to Metawidget's  standard 

inspectors, which generally inspected objects or whole XML configuration files. 



Figure 8: Health Portal uses a custom inspector

The second piece of customisation was a custom widget processor, CamposVariablesBinding. This both 

extracted data values from the XML fragment and wrote them into the generated widgets, and also read them 

back from the generated widget and inserted them into the XML fragment, as shown in figure 9. Again this 

was different to Metawidget's standard binding, which bound data values to domain objects.

Figure 9: Health Portal uses a custom widget processor

Were there areas where you had to write your own plugins, and if so how did you find writing them? The 

project manager explained: “Being able to incorporate Metawidget within an existing UI was important. It's 

fundamental  for  our  project”.  Similarly to  integrate  with  their  existing  back-end:  “It  was  important  it  



supported our back-end. Being able to plug-in our back-end inspectors gave us the flexibility needed, it is  

impossible for Metawidget to support everyone's requirements”. The inverse of this statement is that it is 

unrealistic to expect everyone to change their application to suit Metawidget's requirements. This ability to  

integrate  was  so  important,  in  fact,  that  the  project  manager  summarised  “It  was  critical  Metawidget 

supported both our front-end and back-end, otherwise we probably would not have even tried it [for the  

Health Portal]”.

Were there areas where Metawidget couldn't be made to fit?  The team member couldn't recall any: “No, 

where we used Metawidget it did fit”.

4.4. Performance

How did your application compare, both in terms of speed and memory, before and after the introduction of  

Metawidget?  The team member  replied:  “In this case there was no before and after.  No alternatives to  

Metawidget were ever developed, it was included from the beginning”. However the team had encountered 

no performance problems, having deployed the Health Portal to thousands of clinics across Spain.

Did you find the before and after reasonable in terms of the costs and benefits of UI generation? The team 

member opined: “As [I said] before, there were no alternatives developed. However, we consider the choice 

reasonable in terms of cost and benefits; it was really the only option that met our requirements. If not, these 

requirements would have had to be changed. That would have meant less flexibility to all the parties of the  

project.  Of  course,  another  option would have been to  develop some in-house solution similar  to  what  

Metawidget does, but that was never really an option considering the costs and benefits”. This validated that  

UI  generation is  conceptually a  common problem (Kennard,  Leaney & Edmonds 2009) that  calls  for  a  

general purpose solution rather than an in-house one. “[It] did not add any business specific value if we could 

find a third-party solution that solved the same problem”.

5. Conclusion

In closing, I asked the project manager how he would sum up the team's experiences with Metawidget? 

“Since we use [Metawidget] as a dynamic information capture tool,  it  gives us great flexibility towards  

fulfilling customer requirements in record time. Even more of the information captured is almost as a black 

box where our application does not apply any business rules, [letting] our customers [the insurers] be the 

ones that define the business rules. Our application is a bridge between the user and our customer, and from 

that point of view Metawidget fits our needs perfectly, since it allows us to offer the customer [insurer] with  

a tool for him to decide and customise, without our help, the information that needs to be captured from the  

user [clinic]”.



This case study gathered responses that were pertinent to its qualitative metrics. In turn, these provided an  

understanding of its four themes and validated its goal. The case study found industry developers who had 

accepted,  and successfully adopted,  Metawidget  for use in their  application.  At the time of writing,  the  

Telefónica Health Portal  has been in production for several  months  and deployed to some 3,000 health  

clinics across Spain. This presents strong validation of industry applicability and developer acceptance.

6. Resources

Health Portal: http://salud.telefonica.es

Metawidget: http://metawidget.org

Telefonica: http://telefonica.com

7. References

Basili, V. 1992, 'Software modeling and measurement: the Goal/Question/Metric paradigm'.

GWT 2011. http://code.google.com/webtoolkit

JSF 2011, http://www.jcp.org/en/jsr/detail?id=314

Kennard, R., Edmonds, E. & Leaney, J. 2009, Separation Anxiety: stresses of developing a modern 

day Separable User Interface. 2nd International Conference on Human System Interaction.

Kennard,  R.  &  Steele,  R.  2008,  Application  of  Software  Mining  to  Automatic  User  Interface 

Generation. 7th International Conference on Software Methodologies, Tools and Techniques.

Likert, R. A. 1932. 'A technique for the measurement of attitudes',  Archives of Psychology, New York, No. 

140.

NetBeans 2011, http://netbeans.org

http://netbeans.org/
http://www.jcp.org/en/jsr/detail?id=314
http://code.google.com/webtoolkit
http://telefonica.com/
http://metawidet.org/
http://salud.telefonica.es/

	1.  Introduction
	2.  Organisation and Product Overview
	3.  Integration of Metawidget
	4.  Validation of Metawidget
	4.1.  Obviousness
	4.2.  Convenience
	4.3.  Adaptability
	4.4.  Performance

	5.  Conclusion
	6.  Resources
	7.  References

