Metawidget White Paper

What Good is an OIM?

Richard Kennard
August 2011

http://metawidget.org

1. Introduction

Metawidget has coined the term Object User Interface Mapper (OIM). It's a new take on an old problem.
Like any new approach, it can sometimes be difficult to identify where it can be applied. This white paper
outlines a number of use cases for an OIM, citing examples of real world implementations. In short, it helps

answer the question: what good is an OIM?

http://metawidget.org/

2. Generate User Interfaces from Existing Business Objects

OIMs excel at generating widgets based on your existing Ul framework, matched to your existing application
business objects. Whether the application is a government tool for transaction processing or a pharmaceutical

tool for database maintenance [1], OIMs are ideally suited (Figure 1).

One lead developer summarised: “Many frameworks or tools enforce the [tool] designer's vision on how
solutions should be architected. What I liked about Metawidget is that I could drop it in whatever
architecture I was using” [1]. Another concluded: “In 10 years of software development, I can't count the
number of times I've needed a simple form for users to enter or update data... no one has extended [a
solution] in a general way to apply to a broad audience. Certainly there have been 'form code generators', but

creating the form at runtime from metadata is a far more elegant approach in my opinion” [1].

Home | Logout

Lookup Table Maintenance

Edit Record

]

El

][] [

Product: [BRACANalysis - Comprehensive BRACAnalysis ~|
Mutation Severity: [=]
Report document:
Active flag:
Default flag:

Update date: ~ 2008-11-13
Update userid: rcornia

[ove J one

Orgarizstion: Bakan Trust for Democraty [V]

Figure 1: Transaction processing and database maintenance

OIMs are less cumbersome than visual IDE designers such as NetBeans Matisse (Figure 2), or modelling
languages such as Facelets. They require no repetitive definitions between Ul and business objects. Such
definitions are laborious to define and error-prone to maintain. OIMs are also more flexible than language-
based tools such as Naked Objects. OIMs have an explicit focus on generating the same Ul you would

previously have coded by hand.

BIGUIFormExamples - NetBeans)IDE 6,01 =] E3
File Edt Wew Mavigate Source Refactor Buld Run Profile Versioning Toaols Window Help
@ ContactEditor java = E]@ ‘Palette o =
Source | Design bf_é B + Swing Containers
= Swing Controls
label Label Ok _|Button
Name
Firsk Name: | John Last Name; | Guy ON | Toggle Buttan [#]— check Bax
Title: |Prof, Dr3C Mickname: |gui-masker 0
(®)—
- - (#®) — Radio Button = Button Group
Display Format: | [Mickname] First_MName + Last_Mame U=
= | Combo Box | List
E-mail
text
E-mail Address: Texk Field Texk Area
iohn. guy@xcostyyy
qu@yyyy. o 4] seroll Bar i siider
e Progress Bar -/~/-| Formatted Field
Mail Format: === | Password Field # | Spinner |
(& HTML () Plain Text () Custom
HSeparator T Texk Pane
Ok Cancel
[ox] = =
Editor Pane S| Tree
o-
ContactEditor.java - Properties ¥ x m | Table
B PGS - Swing Menus
Mame ContactEditor =l
A1l Files CriDocuments and Settings\Richardinty Documerts (]| | LB Menu Bar —— [Meru
File Size 16923
Modification Time 2405/2005 19:27:08 "7 Menu Item 1+ =| Menu Ttem | CheckBox
= Classpaths
Compile Classpath CoProgram FilesiHetBeans 6.0 1 platformmocule. . L)) | G| Menu tem J RadicButtan | =—| Popup Menu
Rurtime Classpath C:\Program FilesNetBeans 6.0.1 plstformT\module D
Boot Classpath C:\Program Fileslavaljdk! 6.0_02jrelibresources D Separator
ContactEditor.java = Swing Windows
|¢ = | Dialog | | Frame
2

Figure 2: NetBeans Matisse

The introduction of an OIM can reduce the amount of repetitive, error-prone Ul code in an architecture by up
to 70% [2]. One architect remarked: “it's a fairly established software engineering principle that the more
you have to repeat something the higher the error is, the higher the chances there's going to be an error in the
code” [3]. Another: “We had an experience in our last project, that a lot of view related bugs would come
from missing required fields, wrong formatting and changing the model and not changing the view. Also,
keeping those in synch, required a lot of effort, not complex, but we had most of our junior programmers
dedicated to fixing those silly problems. [After we introduced Metawidget] it simplified a lot and this
category of bug has simply disappeared” [1].

3. Generate User Interfaces from Unconventional Sources

Beyond conventional Ul generation, the five characteristics of an OIM [2] allow it to generate Uls from

arbitrary sources. This opens new possibilities for functionality.

The Telefonica Health Portal allowed users to describe portions of their required Ul themselves, using a
simplified Domain Specific Language. The generated portion was then inserted into the application
dynamically, based on the logged in user's roles and permissions. The team reflected: “ With our requirements

Metawidget was basically the only option. Our usual techniques would not have done the job™ [4].

Another theatre system application exposed a plugin API that generated Uls for each plugin on-demand, at

runtime. The team lead stressed: “One of the really important reasons I used Metawidget for this was that [
have plug-ins that provide data objects for, and 1/O support for, different types of [theatre] systems. | wanted
to be able to just add [plug-ins] and have them be immediately editable without [them] needing to implement

any Ul code at all” [1].

i File Edit Playback Help
Salud : ; _
tgestions “Mw‘\p‘\wyu“‘ww‘\[\‘WL\“Mw‘m‘w‘
00000 e
5

EEE

gt

Soloed: o

Bt
En el teléfo)
902107972 Paci USUARIO DE PRUEBAS Aseguradora: ANTARES
1 NTareta: 0000999910005 Pod numbers T
Estamos para
Facturar como: Doctor que presta el servicio: Usbor number,[0/

ayudarte .
y DC Alergologia [] [Marta Isabel Rodriguez Cabreros =

Especialidad: ALERGOLOGIA Track
Tipo de Acto realizado: [CONSULTAS = 0

Fechaide 18/07/2011 Tipo.de
o enci

Figure 3: 4. Telefonica Health Portal and theatre system

The ability of OIMs to inspect, and collate, metadata from arbitrary back-end sources permits a new level of

dynamically generated Uls.

4. Generate User Interfaces with Consistent Behaviour

OIMs integrate with your existing back-end architecture, and deliver results integrated to your existing front-
end framework. They provide a consistency of behaviour and layout across all the screens of your

application. This goes far beyond traditional technologies such as CSS or Swing Look and Feels.

OIMs generate widgets at runtime from centralised code, ensuring: consistent choice of widgets for data
types (i.e. date pickers for all dates, spinners for all integers); consistent insertion of validators and
converters (i.e. for currency); consistent enforcing of data limits (i.e. minimum values for integers, maximum
lengths for strings); and consistent layout of sub-entities (i.e. separated by section headings, or separated into
tabs). Uls created by an OIM are more consistent and more robust than those created by hand. For example,
few developers bother to put maxlength attributes on every one of their text fields: it is too laborious and
likely to change over time, requiring error-prone maintenance. With an OIM, such limits are enforced

automatically.

[/

Figure 4: Superannuation application and ERP application

One ERP application (Figure 4) used Metawidget to ensure consistent behaviour across a large number of
screens in a large team. The team remarked: “Metawidget is really useful in the way it is the foundation to
build your solution... A great advantage [it offers] is UI standards. It is really hard to keep consistency, visual
or functional standards when building Ul in a large team. However when it is generated dynamically, the

rules are centred and even the customisation is somehow controlled” [1].

5. A Platform for Adopting New Technologies

OIMs provide a common platform for technologies participating in Ul development. Vendors can leverage

this to lower the barrier of entry to adopt their technology, or to open their technology to a new market.

The Bean Validation plugin allows Metawidget to inspect Bean Validation annotations and translate them
into Ul data limits. This automatically allows Bean Validation to be applied to diverse Ul frameworks

including Swing, SWT, Spring and Java Server Faces.

The RichFaces plugin allows Metawidget to generate RichFaces components for arbitrary back-end
architectures. This automatically allows RichFaces to bind to technologies such as Drools and jBPM. If an
application is already using Metawidget, adding the RichFaces plugin will automatically upgrade every

widget in the application across every screen to use rich Ul widgets such as date pickers and spinners.

6. Conclusion

This white paper has outlined a number of use cases for an OIM, and cited examples of real world
implementations. We hope this will help you identify areas Metawidget could be used within your own
applications. You can then apply the new approach of an OIM to the old problem of repetitive, error-prone

UI code - saving both you and your organisation time and money.

7. References

I.

Kennard, R. 2011, 'Adoption Studies'. Retrieved from

http://metawidget.org/media/whitepaper/Metawidget WhitePaper-AdoptionStudies.pdf

Kennard, R. & Leaney, J. 2010, Towards a General Purpose Architecture for Ul Generation.
Journal of Systems and Software.

Kennard, R., Edmonds, E. & Leaney, J. 2009, Separation Anxiety: stresses of developing a
modern day Separable User Interface. 2 International Conference on Human System
Interaction.

Kennard, R. 2011, 'Case Study: Telefonica Health Portal'. Retrieved from
http://metawidget.org/media/whitepaper/MetawidgetWhitePaper-TelefonicaHealthPortal.pdf

http://metawidget.org/media/whitepaper/MetawidgetWhitePaper-TelefonicaHealthPortal.pdf
http://metawidget.org/media/whitepaper/MetawidgetWhitePaper-AdoptionStudies.pdf

	1. Introduction
	2. Generate User Interfaces from Existing Business Objects
	3. Generate User Interfaces from Unconventional Sources
	4. Generate User Interfaces with Consistent Behaviour
	5. A Platform for Adopting New Technologies
	6. Conclusion
	7. References

